

Battelle The Business of Innovation

Sorbisense GWS40 Passive Sampler

Joint test report

Volatile organic compounds in groundwater

Joint test report

Sorbisense GWS40 Passive Sampler

Joint test report

Agern Allé 5 DK-2970 Hørsholm Denmark

Tel: +45 4516 9200 Fax: +45 4516 9292 ghe@dhigroup.com www.dhigroup.com

Vendor	Vendors representative
Sorbisense A/S	Hubert de Jonge

Project	t	Project No			
	Nordic Water Technology Verification Centers	80144	Ļ		
Author	S	Date			
	Gerald Heinicke, Mette Tjener Andersson	February	2010		
		Approved by	у		
		Ander	s Lyng	gaard-Je	ensen
1	Joint test report	GHE/MTA	CHG	ALJ	2010.03.17
Revision	Description	Ву	Checked	Approved	Date
Key wo	ords	Classificatio	n		
	Environmental technology verification; Groundwater;	🛛 Oper	ı		
	Passive sampler		nal		
			rietary		

Distribution		No of copies
Sorbisense DHI UBA-A Battelle	HdJ CHG, GHE, MTA, ALJ DM AMG, ZJW	File distribution only

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	II
2		1
2	Varification protocol reference	۱۱ ۱
2.1	Name and contact of vonder	۱۱ 1
2.2	Name of conter/test responsible	۱۱ 1
2.3	Technical experts	۱۱ 1
2.4		1
3	TEST DESIGN	2
3.1	Test sites	5
3.1.1	Types	5
3.1.2	Addresses	5
3.1.3	Descriptions	5
3.2	Tests	5
3.2.1	Test methods	5
3.2.2	Test staff	13
3.2.3	Test schedule	13
3.2.4	Test equipment and methods	13
3.2.5	Type and number of samples	14
3.2.6	Operation conditions	15
3.2.7	Operation measurements	15
3.2.8	Product maintenance	15
3.2.9	Health, safety and wastes	16
Л	REFERENCE ANALYSIS	16
- 4 1	Analytical Jaboratory	10
4.1	Analytical habitatory	10 16
4.2	Analytical methods	10
44	Analytical performance requirements	10
4.5	Preservation and storage of reference samples	
F		10
5	DATA MANAGEMENT.	
5.1	Data storage, transfer and control	18
6	QUALITY ASSURANCE	18
6.1	Test plan review	19
6.2	Performance control – reference analysis	19
6.3	Test system control	20
6.4	Data integrity check procedures	20
6.5	Test system audits	21
6.6	Test report review	21
7	TEST RESULTS	21
71	Test data summary	21 21
711	Direct application sample dispenser and standnine tests	21 21
712	Field test	21 26
72	Test quality assurance summary	ע <u>ז</u> ייייי 12
721	Sample analysis performance data	उ। २१
722	Reference analysis control data	
7.2.3	Test system control data	
	,	

7.3	Test performance observation	
7.3.1	True volumes that passed through the samplers	
7.3.2	Direct application tests	
7.3.3	Tests using the sample dispenser	
7.3.4	Tests in the standpipe	
7.3.5	Field test in monitoring wells	
7.4	Amendments and deviations from the test plan and test protocol	40
APPEI	NDIX 1	
Terms	and definitions used in the test plan	41
APPEI	NDIX 2	
Refere	ence methods and references	47
APPE	NDIX 3	
In-hou	se test methods	51
APPEI	NDIX 4	69
In-hou	se analytical methods	69
APPE	NDIX 5	71
lest d	ata report	
	NDIX 6	
Data N	папауеттеп	
APPE	NDIX 7	
Devial	אויט אויט אויט אויט אויט אויט אויט אויט	15
APPE	NDIX 8	
Field r	eport	137

2 INTRODUCTION

This joint test report describes the implementation and the results of a test design developed for verification of the performance of an environmental technology following the NOWATECH ETV method.

The verification is a joint verification with the US EPA ETV scheme and the Advanced Monitoring Systems (AMS) Center, Battelle, see the verification protocol /1/ for details on organization and implications. The compliance of the test with both scheme's requirements was ensured through a process document /2/.

2.1 Verification protocol reference

This test report has been prepared in response to the test design established in the Sorbisense GWS40 Passive Sampler, verification protocol/1/.

2.2 Name and contact of vendor

Sorbisense A/S, Niels Pedersens Allé 2, DK-8830 Tjele, Denmark, phone +45 8999 2505, +45 8999 2599.

Contact: Hubert de Jonge, e-mail hubert@sorbisense.com.

The laboratory responsible for the analysis of samples (subcontractor to the vendor) was: ALcontrol Laboratories, Steenhouwerstraat 15, 3194 AG Hoogvliet, Netherlands.

Contact: Jaap Willem Hutter, e-mail j.hutter@alcontrol.nl

2.3 Name of center/test responsible

NOWATECH Water Monitoring ETV Center (NOWATECH WMC), DHI, Agern Allé 5, DK-2970 Hørsholm, Denmark.

Test responsible: Gerald Heinicke, e-mail <u>ghe@dhigroup.com</u>, phone +45 9516 9268.

US EPA Advanced Monitoring System Center, Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201-2693, US.

Test responsible: Anne M. Gregg (AMG), e-mail <u>gregga@battelle.org</u>, phone +1 614-424-7419.

2.4 Technical experts

The expert group assigned to this test and responsible for review of test plan and test report included:

Dietmar Müller (DM), e-mail <u>dietmar.mueller@umweltbundesamt.at</u>, Contaminated Sites, Umweltbundesamt, Spittelauer Lände 5, 1090 Wien, Austria, phone +43-(0)1-313 04/5913. Mike Sherrier (MS), e-mail <u>michael.p.sherrier@usa.dupont.com</u>, DuPont, Chestnut Run Plaza, Bldg 715-230, 4417 Lancaster Pike, Wilmington, DE 19805, US, phone +1 302-999-2533.

Cynthia Paul (CP), e-mail <u>paul.cindy@epa.gov</u>, U.S. Environmental Protection Agency, 919 Kerr Research Drive, P.O. Box 1198. Ada, OK 74820, US, phone: +1 580-436-8556.

3 TEST DESIGN

The test design outlined in the test protocol is summarized in Table 1. The term "samples" is used for samples taken with the Sorbisense sampler, whereas the term "reference samples" is used for water samples taken for reference analysis, after a reference method in an accredited (ISO 17025) laboratory. Acronyms are explained in Appendix 1.

If nothing else is stated below, the standard conditions for the standpipe test performed in the laboratory included mid-range ionic strength (30-70 mS/m conductivity), a sampling period of 6 days and a sampling depth of 0.5 m (0.05 atm overpressure).

In Table 1, labels are given for each experiment and for experiments with different levels; a new label is given for each level.

The tests were carried out on chlorinated compounds, BTEX and MTBE (VOC). Due to the chloroethene being very volatile a specific set-up had to be made for tests with chloroethene, referred to as "Direct application", in this set up was included all chlorinated compound (VOX) but not BTEX and MTBE.

Table 1 Overview of test design.

Performance	Lat	ooratory	Standpipe ¹	Field
parameters	Direct application ²	Sample dispenser ¹		
Limit of detection (LoD)	Direct application of VOX standard dilution to samplers in 7 replicates at 5 x LoD. Triplicate reference analysis of VOX standard dilution. Exp. H	n.a. ³	 7 replicate samples at 5 x LoD, spiked concentration. 7 reference samples distributed over the sampling period, in replicates of 2-3-2. Exp. J 	n.a.
Precision (repeatability and reproducibility) Range of application Trueness Robustness, general	Direct application of VOX standard in 7 replicates to samplers at 10% of range. Exp. L	n.a.	Triplicate samples and three reference samples, the latter distributed over the sampling period, at 5 spiked VOC conc.: 10, 25, 50, 75, 100% of range. Exp. N, P, R, T, V	Single samples and refer- ence samples at 3 (Sorbi- sense) or 4 (reference) times from a total of 5 wells at 2 sites, inherent concentrations. Exp. AA, AB, AC, AD, AE
Robustness, specific				
- Reference for the robustness test levels	n.a.	Triplicate samples at 1 spiked 50% range VOC concentration, 1 mid range ionic strength (35 mS/m) and 1 mid range sampling time (6 days) from the sample dispenser. Three reference samples distrib- uted over the sampling period. Exp. BA	Precision test above	n.a.
- Sampling depth	n.a.	n.a.	Triplicate samples at 1 spiked VOC mid range concentration, 0.5 atm. overpressure. Three reference samples dis- tributed over the sampling pe- riod. Exp. CA	n.a.
- Ionic strength	n.a.	Triplicate samples at 1 spiked	n.a.	n.a.

¹ Standpipe and sample dispenser experiments were done with the full VOC set without chloroethene, by addition of stock solution produced from pure chemicals. ² Direct application was done with chloroethene and the other chlorinated compounds (VOX), but without the BTEX and MTBE. ³ n.a.: not applicable.

Performance		Laboratory	Standpipe ¹	Field
parameters	Direct application ²	Sample dispenser ¹		
		mid-range VOC concentration, 2 ionic strengths (10 and 100 mS/m), (6 days), from the sample dispenser. Three reference samples distrib- uted over the sampling period for each ionic strength. Exp. DA, EA		
- Sampling time	n.a.	Triplicate samples at 1 spiked VOC mid range concentration, mid range ionic strength and 2 sampling times (3 and 9 days), from the sample dispenser. Three reference samples distrib- uted over the sampling period for each sampling time. Exp. FA, GA	n.a.	n.a.
- Concentration integration	n.a.	Triplicate samples at a step VOC concentration, 3 concentrations (20, 50 and 80% of range), each at 1/3 of 6 days sampling period, from the sample dispenser. Three reference samples, each in the middle of the 2-days periods. Exp. HA	n.a.	n.a.

3.1 Test sites

The direct application, sample dispenser and standpipe tests were conducted in the DHI laboratory building, Hørsholm, Denmark.

The field tests were carried out on contaminated sites in the Copenhagen area.

3.1.1 Types

The test sites are summarized in Table 2.

Scale	Address/site	Site details	VOC profile for test	
Direct appl.	DHI premises	None	Chlorinated solvents (VOX)	
Dispenser	DHI premises	None	All target compounds (VOC) except chloroethene	
Standpipe	DHI premises	None	All target compounds (VOC) except chloroethene	
	Søborg Hovedgade,	C8	Chlorinated solvents, BTEX,	
	Søborg		intermediary concentrations	
	Søborg Hovedgade,	C11	Chlorinated solvents, BTEX,	
Field	Søborg		low/intermediary concentrations	
Field	Søborg Hovedgade,	C14	Chlorinated solvents, BTEX,	
	Søborg		intermediary concentrations	
	Farum Bytorv, Farum	B17	BTEX + MTBE, high concentrations	
	Farum Bytorv, Farum	B18	BTEX + MTBE, low concentrations	

Table 2 Summary of test sites.

3.1.2 Addresses

See Table 2.

3.1.3 Descriptions

See Table 2.

3.2 Tests

The test program was prepared to provide the information and to apply the approaches presented for analytical quality control for water analysis (ISO 13530) /3/ and for performance test of on-line sensors/analyzing equipment (ISO 15839) /4/. The field tests were guided by the test requirements in the Cost Agreement (pre-standard) on verification of monitoring technologies for groundwater site characterization (CEN/WS 32:2008) /5/.

The test design, as described in Table 1, included four test scales: direct application, sample dispenser, standpipe and field.

For the volatile chloroethene (vinyl chloride), the performance was tested only in a simplified laboratory design (direct application, best possible LoD, repeatability precision and trueness) and in the field (realistic reproducibility precision and robustness) due to difficulties preparing, obtaining and handling chloroethene solutions in the laboratory.

3.2.1 Test methods

No standard methods exist for testing of passive samplers for groundwater monitoring. The test methods were prepared for the purpose (see Appendix 3), with reference to the

Ground Water Sampling Technologies Verification Test Plan prepared for the US EPA ETV program /6/. Preparation of test solutions, reagents and chemicals are described in Appendix 3 as well. It should be noted that the methods in Appendix 3 are described at the detailed level of a work instruction for direct implementation in the laboratory.

For the sample dispenser tests, MilliQ water was used for preparing test solutions. For standpipe tests, groundwater (Appendix 3.7) was used for preparing test solutions.

For the sample dispenser and standpipe tests, custom-made stainless steel test devices were prepared, see below.

For <u>direct application laboratory tests</u>, a standard solution with chlorinated compounds only was applied to the samplers directly with a syringe, followed by equilibration and flushing with water using the sample dispenser, see Appendix 3.1 for method description (no illustration).

The <u>sample dispenser</u>, Figure 1 to 3, was designed as a closed system that enabled direct exposure of samplers to test solutions with known and stable VOC concentrations by conveying the test solution from a closed container by gravity, see Appendix 3.2. The container was equipped with spiking port, sampling port and magnetic stirrer to maintain homogeneous conditions in the sample container. The volume of the sample dispenser was 40 L.

Figure 1 Sketch of sample dispenser.

Figure 2 Sample dispenser with capillaries and samplers attached.

Figure 3 Detail of sample dispenser.

The <u>standpipe test</u> device, Figure 4, was designed as a closed container filled with test solution where the sampling system with samplers can be suspended from the top, see Appendix 3.3. Air from the sample reservoir is vented through an air hose. The container is equipped with sampling ports, and mixing is ensured through continuous pumping from top to bottom. The volume of the standpipe was 102 L and the pumping rate 27 L/h.

For both the sample dispenser and the standpipe, the air entering the container to replace dispensed liquid is saturated with VOCs at the same concentration as in the container, by using an air wash bottle.

and100811800378-3

Figure 4 Sketch of standpipe.

Figure 5 Standpipe. The air wash bottle is in the fume cupboard.

Figure 6 Detail of standpipe: recirculation pump and spiking port.

The <u>field sampling</u>, Figure 7, was done by suspending the sampling systems with samplers in the screened intervals in monitoring wells, see Appendix 3.4. Reference samples were taken with a reference sampling pump inserted into the well before and/or after placement of the sampling system.

The sequence of sampling and reference sampling was as follows. Initially, the well was reference sampled ensuring that fresh groundwater was found in the screened interval, followed by retrieval of the pump and installation of the sampler. After the first sampling period, the sampler was retrieved, the pump reintroduced (same pump, wiring and tubing), and a new reference sampling was done. This was continued through the 3 sampling sequences, ending with a reference sample.

Figure 7 illustrates the positioning of sampler and reference sampling pump. Figure 8 shows photos from the field.

Figure 7 Sketch of field sampling.

Figure 8 Photos from field sampling.

For all reference samplings, a low purge sampling strategy was followed, allowing only for flushing of sampling equipment. The water quality was monitored online (pH, conductivity, temperature and oxygen). Cleaning of the well and good contact with the reservoir was obtained when stable parameters were reached. Hereafter reference samples were taken. Details of the low purge reference sampling can be found in Appendix 3.4 with reference to /7;8/ and Appendix 8.

The reference sampling was performed by a subcontractor. Their field report is included as Appendix 8 (in Danish; for explanations on the Danish text, please contact the authors of this test report).

3.2.2 Test staff

The test staff were: test responsible Dr. Gerald Heinicke (GHE), field responsible Mette T. Andersson (MTA) and test technician Susanne Klem (SEK).

3.2.3 Test schedule

The test schedule is given in Table 3. See Table 1 for identification of experiment labels.

Task	Period
Preparation of test plan	July 2008 - January 2009
Pre-testing dispenser	12-18 November, 2008
Direct application	18 November, 2008
Tests using dispenser	16 January - 22 March, 2009
BA	16-22 January, 2009
DA	23-29 January, 2009
EA	30 January - 5 February, 2009
FA	6-9 February, 2009
GA	10-19 February, 2009
НА	16-22 March, 2009
Set up standpipe	December16, 2008-February 6, 2009
Test using standpipe	10 February - 23 April, 2009
J	17-23 February, 2009
Ν	16-22 March, 2009
R	25 March - 1 April, 2009
Т	1-7 April, 2009
CA	7-13 April, 2009
V	17-23 April, 2009
Test field	12 February - 2 March, 2009
Test report draft	May-September, 2009
Test report QA	October 2009 - January 2010
Test report	February 2010

Table 3Test schedule.

3.2.4 Test equipment and methods

The test equipment and methods included (working procedures):

- Laboratory sample dispenser (Appendix 3.2).
- Standpipe (Appendix 3.3).
- Field sampling (Appendix 3.4).

The laboratory and standpipe equipment have been designed and built specifically for this verification test. Equipment test procedures are described in Appendix 3.5.

Laboratory equipment procedures including cleaning and calibration were done according to ISO 17025 accreditation /9/ for the DHI laboratories under the laboratory services manual of the DHI Quality Management System /10/.

3.2.5 Type and number of samples

The types and number of samples are summarized in Table 4.

Table 4Summary of type and number of samples. The numbers of samples, reference samples and
reference analysis sent for analysis.

	Laboratory		Standpipe	Field
	Direct appl.	Dispenser		
Limit of detection	7 analyses		7 samples	
	3 reference		7 reference samples	
	analyses		3 reference analyses	
Precision	7 analyses		15 samples	15 samples
Range of application			15 reference samples	20 reference
Trueness			5 reference analysis	samples
Robustness, general				•
Robustness, specific				
- Reference for the		3 samples		
robustness test		3 reference		
levels		samples		
		1 reference		
		analysis		
- Sampling depth			3 samples	
			3 reference samples	
- Ionic strength		6 samples		
_		6 reference		
		samples		
		2 reference		
		analyses		
- Sampling time		6 samples		
		6 reference		
		samples		
		2 reference		
		analyses		
- Concentration		3 samples		
integration		3 reference		
		samples		
		1 reference		
		analysis		
Samples per test	14 analyses	18 samples	25 samples	15 samples
scale	3 reference	18 reference	25 reference samples	20 reference
	analyses	samples	7 reference analyses	samples
		6 reference		
		analyses		
Check stock solu-	5 reference analyses of stock			
tions		solutior	n (unopened vials)	
		1	stock dilution	
Samples totally ⁴		72 samples/analyses		
	86 reference samples/analyses			

⁴ Excluding reference samples from pre-testing of the sample dispenser.

The term analysis covers analysis of Sorbisense samplers that have been exposed to standard solutions by direct application. The term reference analyses covers analysis of standards and standard dilutions after a reference method in an accredited (ISO 17025) laboratory.

The analytical program included 22 reference analyses of VOC stock solutions, VOC stock dilutions, or diluted analytical standards. As the stability of the solutions proved satisfactory, the number was reduced from the originally planned 26 reference analyses.

In addition to the reference samples included in the above table, 21 reference samples controlling the test systems were taken and analyzed as described in Appendix 3.5. This included blanks taken from the sample dispenser, and the water used for the tests.

An analysis of the groundwater used in the laboratory tests was obtained from the municipal water works.

In the field, groundwater quality was analyzed in all wells.

3.2.6 Operation conditions

The operation conditions applied during the verification of the product were:

- Sampling temperature: ambient 5-25°C.
- Sampling depth: 0.5-5 m below the water surface.
- Sample volume: up to 600 mL.
- Sampling period: up to 9 days.
- Sampling replicates: 1 to 7 samplers per sampling event.

3.2.7 Operation measurements

During operation, the following operation conditions were recorded, as relevant, see Appendix 5:

- Sampling temperature: 9-22°C.
- Depth of sample intake: 0.5 m for the sample dispenser tests, 0.5 m and simulated 5 m for the standpipe tests, 1.7-4 m for the field tests.
- Sample volume: from zero (no flow) to 620 mL. The lowest sample volume for a sampler result, not discarded by the vendor, was 80 mL. Volumes over 500 mL were not determined by tracer salt analyses, but sample volumes measured manually were used.
- Sampling period: from 3 to 9 days.

3.2.8 Product maintenance

Samplers were kept in sealed bags, as delivered from the vendor, at ambient temperature until used. Opened bags with unused samplers were resealed until used and stored at 4° C.

No maintenance was prescribed for the equipment. The reservoirs were washed when a slimy layer was found on the outside after prolonged use in the standpipe.

3.2.9 Health, safety and wastes

The use of the product does not imply special health, safety and waste issues.

Laboratory work during testing was done according to the DHI Safety Rules that are compliant with the extensive Danish rules for safe occupational health and the European regulations of work with chemicals.

Field work was done according to the DHI rules for safe field work included in the DHI Safety Rules.

Chemicals and test solutions were discarded according to Danish regulations for chemical waste by collection and destruction, *in casu* by collection in drums followed by controlled destruction.

4 REFERENCE ANALYSIS

An aliquot of each test solution was submitted to an analytical laboratory for reference analysis. These samples verified the actual concentrations of the test solutions and the results were compared to the results of the product in this verification.

4.1 Analytical laboratory

Reference analyses were done by Eurofins Danmark A/S, Smedeskovvej 38, DK-8464 Galten, Denmark.

Contact Rita Splidt Pedersen, Eurofins Miljø A/S, +45 7022 4266.

4.2 Analytical parameters

The analytical parameters are given in Table 5.

Analytical parameters	
Chloroethene	Benzene
1,1-Dichloroethene	Toluene
1,2-Dichloroethenes (trans- and cis-)	Ethylbenzene
Trichloroethene	Xylenes (o- and m/p-)
Tetrachloroethene	MTBE

Table 5Analytical parameters.

4.3 Analytical methods

The analyses were done using purge and trap gas chromatography with mass spectrometry detection in the selected ion monitoring mode (P&T GC-MS-SIM) according to the packages given in Table 6.

Analytical package	Parameter	Limit of detection	Uncertainty
		µg/l	%
	Trichlorethene	0.02	7.5
	Tetrachlorethene	0.02	9.2
DR124 chlorinated solvents and	1,1-Dichlorethene	0.02	8.5
degradation products	trans-1,2-dichlorethene	0.02	8.2
	cis-1,2-dichlorethene	0.02	14
	Chloroethene	0.02	7.7
	Benzene	0.02	7.4
	Toluene	0.02	8.9
DR102 BTEX	Ethylbenzene	0.02	9.4
	o-Xylene	0.02	7.4
	m/p-Xylene	0.02	7.3
33145 MTBE	МТВЕ	0.1	7.0

Table 6Analytical packages, parameters and performance expectations from the contracted labora-
tory.

The analytical method is based upon EPA Method 624 / 11 / and ISO 15680 / 12 / (see Appendix 2 for details).

4.4 Analytical performance requirements

The analytical performance requirements are given in Table 7.

It should be noted that the uncertainties stated by the laboratory, Table 6, include both the random error under reproducibility conditions (requirements set here for the precision under repeatability conditions) and the systematic errors (requirements set here for trueness).

For MTBE, there was concern whether the analytical laboratory would be able to satisfy the limit of detection of 0.03 μ g/L, compare Table 6 and Table 7. Such a low limit of detection is generally required for the quantification of contaminants at trace concentrations in groundwater. Given the limit of detection stated by the vendor, the limit of detection available at the contracted laboratory was considered sufficient.

Compound	Limit of detection	Precision	Trueness	Range of application
	μg/L	%	%	μg/L
Chloroethene	0.03	5	90-110	0.03-2000
1,1-Dichloroethene	0.03	5	90-110	0.03-2000
1,2-Dichloroethenes	0.03	5	90-110	0.03-2000
Trichloroethene	0.03	5	90-110	0.03-2000
Tetrachloroethene	0.03	5	90-110	0.03-2000
Benzene	0.03	5	90-110	0.03-2000
Toluene	0.03	5	90-110	0.03-2000
Ethylbenzene	0.03	5	90-110	0.03-2000
Xylenes	0.03	5	90-110	0.03-2000
MTBE	0.03	5	90-110	0.03-2000

Table 7Required analytical performance.

4.5 Preservation and storage of reference samples

All water samples for VOC reference analysis were taken in 3x40 mL autosampler vials with Teflon lined screw caps as delivered from the laboratory contracted for reference sample analysis. The water samples were not preserved but stored cold (1-5°C) and dark until delivered to the laboratory within a maximum of 3 (in one occasion 4) days.

Stock solutions samples for reference analyses were taken in 1.5 mL capped vials and stored cold $(1-5^{\circ}C)$ and dark until delivered to the laboratory within a maximum of 3 days. Spare samples of stock solution or stock dilution were kept in the freezer at -20°C.

5 DATA MANAGEMENT

The data filing and archiving procedures of the DHI Quality Management System were followed.

5.1 Data storage, transfer and control

The data compiled and stored are summarized in Table 8.

Analytical raw data was filed and archived according to the specifications of the laboratories' quality management systems under their ISO 17025 accreditation, Eurofins for reference analysis and AlControl for sample analysis.

Data type	Data media	Data	Data	Data storage
		recorder	recording tim-	
Test plan and	Protected PDF	Test responsi-	When approved	Files and
report	files	ble, DHI	by responsible	archives at DHI
Test details in	Log book and	Technician, DHI	During collection	Files and
laboratory and	pre-prepared			archives at DHI
field	forms			
Calculations	Excel files	Test responsi-	During calcula-	Files and
		ble, DHI	tions	archives DHI
Analytical	PDF files, as	Test responsi-	When received	Files and
reports	accredited. With	ble, DHI		archives DHI
	additional digit			
	as Excel files			

Table 8Data compilation and storage summary.

Tables with the data recorded are shown in Appendix 5.

6 QUALITY ASSURANCE

The tests were performed under the quality management system of DHI which is ISO 9001 compliant /13/, but not certified. The DHI laboratories have ISO 17025 accreditations /9/ and OECD GLP approvals /14/ for a range of tests and ISO 17025 for sampling of drinking water. As part of the ISO 17025 and GLP inspections, the procedures for

general laboratory processes, quality assurance and documentation/archiving were reviewed.

6.1 Test plan review

The test plan was subject to internal review by the verification responsible from NOWATECH WMC Verifications: senior chemist Christian Grøn. Additionally, the test plan was subject to review by the Battelle Advanced Monitoring Center quality manager (Zachary Willenberg), as well as by the US EPA ETV AMS project officer, quality manager and ETV coordinator (John McKernan, Lauren Drees and Evelyn Hazell, respectively).

External review of the test plan was done by the technical experts assigned to this verification.

6.2 Performance control – reference analysis

Reference analysis at an external laboratory comprised analysis of general chemistry and of reference samples. All reference analyses were done under the ISO 17025 accreditation of Eurofins.

The performance of Eurofins for the reference analysis was evaluated (performance evaluation audit) from laboratory quality control data for the relevant period (precision under repeatability conditions, trueness). Data for the analytical quality control of the laboratory included duplicate control samples at two concentrations (acceptance within $100\%\pm10\%$) in each series and at least one blank sample per 5 samples. The data from participation in a proficiency test arranged by Analytical Products, Inc., September 2008 was evaluated for the demonstrated precision and traceability for the compounds in question for relevant matrices.

The detection limits and risks of false positives of the laboratory were controlled by submitting blank samples and low concentration samples.

The precision and trueness of the laboratory was further evaluated by analysis of stock, standard and spike solutions used for the test (22 reference analyses). The reference analysis included analysis of standards with analytical certification, diluted at DHI, and of solutions prepared from pure chemicals at DHI.

The analytical reference performance control is summarized in Table 9, with reference to Appendix 3.6 and 3.7 for information on water, standard solution (purchased standard with analytical certificate) and VOC solutions (prepared by DHI from pure chemicals).

Control type	Limit of detection or blanks	Precision	Trueness
VOX standard solution	-	-	Х
VOC solutions	-	Х	Х
Groundwater (field)	X	-	-
Laboratory quality control	X	Х	Х
Proficiency test	-	-	Х

Table 9Summary of analytical reference performance control.

6.3 Test system control

The laboratory test system control included test solutions of known concentrations, traceable back to added chemicals of p.a. quality or standards with analytical certification, see Appendix 3.7 for specifications of purity, etc.

Known concentrations were used to pre-test the test design, see Appendix 3.5. The water used for preparation of solutions was controlled for contents of the target VOCs as part of the system control.

The system contamination test of the standpipe was done indirectly, with data from the LoD test. This data was also used for controlling the groundwater (municipal drinking water) for possible contents of the target VOCs.

The stability of the test concentrations was controlled continuously during the tests by taking and analyzing reference samples distributed over the sampling periods, considering the "true concentrations" based upon added amounts and the reference analyses.

The control of the field test system was done using analysis of reference samples and field blank samples.

The analytical reference performance control is summarized in Table 10. Sample dispenser blanks were MilliQ water with ionic strength controlled by adding KCl. Standpipe sample blanks were a groundwater matrix. The system contamination/blank sample reference analysis for the standpipe was controlled indirectly, by the reference samples from test J, at 5 times the LoD stated by the vendor.

Information/control type	Laboratory		Standpipe	Field
	Direct application	Sample dispenser		
System contamination/blank sample reference analysis	-	Х	(X)	-
System contamination/field blank sample reference analysis	-	-	-	Х
System trueness/spiked sample reference analysis	х	Х	х	-
System variability/spiked sample reference analysis	-	Х	х	-
System trueness/natural sample reference analysis	-	-	-	Х
System variability/natural sample reference analysis	-	-	-	Х

Table 10Summary of test system control.

6.4 Data integrity check procedures

All transfer of data from printed media to digital form and between digital media were checked by spot check of not less than 5% of the data (test or field responsible). If errors were found in a spot check, all data from the transfer were checked.

6.5 Test system audits

Internal audit from DHI following the GLP audit procedure by a trained auditor was done, see the verification protocol for details.

The Battelle quality manager, Zachary Willenberg, performed a technical systems audit (TSA) during this verification and test. The purpose of this audit was to ensure that the verification test was being performed in accordance with the AMS Center quality management plan /15/, the test/quality assurance plan, published reference methods and any methods used in the tests. During the TSA, the Battelle quality manager reviewed the reference methods used, and compared actual test procedures to those specified or referenced in the plan. The Battelle quality manager also observed testing in progress, observed the reference method sample preparation and analysis, inspected documentation, and reviewed technology-specific record books. He also checked standard certifications. A TSA report was prepared, including a statement of findings and the actions taken to address any adverse findings. The AMS quality manager and the NOWATECH WMC verification responsible received a copy of Battelle's TSA report. The TSA findings were communicated to technical staff at the time of the audit.

The Battelle Quality Manager performed an audit of data quality (ADQ). This was a review of data acquisition and handling procedures and an audit of at least 10% of the data acquired in the test and verification. The Battelle Quality Manager traced the data from initial acquisition, through reduction and statistical comparisons, to final reporting. All calculations performed on the data undergoing the audit were checked.

6.6 Test report review

The test report was subject to internal review by chief engineer Anders Lynggaard-Jensen (ALJ), DHI.

External review of the test report was done by the technical experts.

7 TEST RESULTS

7.1 Test data summary

The test results are summarized below, sorted after the performance parameters investigated. To follow the path of raw data, calculation and reporting, the reader is referred to the test design (Section 3), raw data (Appendix 5), and calculation (Verification report, Section 8.1). The Excel worksheets containing the actual calculations are archived at DHI.

7.1.1 Direct application, sample dispenser and standpipe tests

The tests performed investigated the limit of detection, precision and trueness, as well as robustness against several parameters under well-defined conditions.

Limit of detection

The limit of detection (LoD) was calculated (tests H and J in Appendix 5) at 5 times the vendor-stated LoDs, see Table 11. Also negative values were included in the calculation. Both in the direct application and in the standpipe tests of LoD, one out of seven

samplers was excluded due to lack of flow through the sampler. For chloroethene (direct application) and 1,1-dichloroethene (standpipe), four out of six remaining replicates were reported as zero. It was therefore judged that the peaks of these compounds were not detected at this concentration. The LoD could accordingly not be detected at this concentration. A conservative estimate of the detection limits are instead stated as calculated from test at 10% of range concentration for direct application (chloroethene, test L, n=7) and standpipe (1,1-dichloroethene, test N, n=3). The analysis of trichloroethene from standpipe data resulted in a wide range of positive and negative values, thus the high detection limit calculated. The LoD calculated from the direct application test (H) may be regarded as a lower boundary, under best-case conditions, taking into account the sorbent and the analysis only. Under these conditions, the LoD for 1,1-dichloroethene 0.3 μ g/l.

Table 11 Limit of detection (μ g/L). The number of replicates (n) is 6, except for chloroethene, where n=7 and 1,1-dichloroethene, where n=3.

Compound	Laboratory Direct application	Standpipe
	μg/L	μg/L
Chloroethene	<30	
1,1-Dichloroethene		<90
trans-1,2-Dichloroethene		4
cis-1,2-Dichloroethenes		4
Trichloroethene		70
Tetrachloroethene		2
Benzene		3
Toluene		4
Ethylbenzene		5
o-Xylene		4
m/p-Xylenes		3
MTBE		6

Precision

Precision was investigated in the standpipe tests by exposure of multiple samplers at several concentrations. The results are shown in Table 12. For chloroethene, precision was calculated from the direct application tests at 10% of the measurement range.

Table 12Precision as relative standard deviation (RSD) in percent. n replicates in m tests. direct application: n=7, m=1 at 10% of range. Sample dispenser: n=3, m=5 at nominal 1000 μg/l,
Standpipe: n=3, m=5 at ca. 200-2400 μg/l.

	Laboratory			Standpipe	
	Direct application	Sample	Sample dispenser		
	10% of range	Samplers	Reference	Samplers	Reference
Compound	RSD	RSD	RSD	RSD	RSD
	(%)	(%)	(%)	(%)	(%)
Chloroethene	9.6				
1,1-Dichloroethene		6.8	9.4	11	19
trans-1,2-		11	6.7	11	16
Dichloroethene					
cis-1,2-		11	3.1	10.2	12
Dichloroethene					
Trichloroethene		14	4.2	9.1	13
Tetrachloroethene		13	9.5	8.5	19
Benzene		9.0	3.9	10.0	15
Toluene		12	3.1	9.5	13
Ethylbenzene		12	2.6	8.6	30
o-Xylene		13	3.0	8.8	18
m/p-Xylene		12	2.4	8.5	22
MTBE		10	6.4	10.6	16

Trueness

In the standpipe tests shown in Table 13, trueness varied between the five tests done at different concentrations (test N, P, R, T, V), without a correlation to concentration. The range of trueness in the standpipe was between approximately 90% and 190%. For chloroethene, the trueness from the direct application test at 10% of the measurement range is stated.

Table 13Trueness of sampler results from the direct application and standpipe tests. n replicates in m
tests. Direct application: n=7, m=1 at 10% of range. Standpipe: n=3, m=5 at ca. 200-
2400 μg/l.

	Laboratory		Standning	
			Stanupipe	
	Mean	Minimum	Average	Maximum
Compound	%	%	%	%
Chloroethene	65			
1,1-Dichloroethene		78	100	156
trans-1,2-Dichloroethene		73	101	154
cis-1,2-Dichloroethene		93	129	188
Trichloroethene		77	110	141
Tetrachloroethene		94	137	196
Benzene		89	135	212
Toluene		89	131	201
Ethylbenzene		87	153	226
o-Xylene		94	139	201
m/p-Xylene		99	138	207
MTBE		103	147	252

Range of application

Limits for the range of application could not be established in the laboratory tests. Trueness did not vary systematically with concentration for the tested range.

The highest concentrations that could not be excluded as non-linear for sampler measurements after visual evaluation are given in Linear range data were not available for chloroethene, as this compound could not be included in the multiple concentration test in standpipe.

Table 14 shows linear maximum concentration with the coefficient of regression (R^2) , the slope (a) and the intercept (b) of the plot of sample measurements versus reference sample measurements.

Linear range data were not available for chloroethene, as this compound could not be included in the multiple concentration test in standpipe.

Compound	Standpipe				
-	Linear maximum	Linear regression parameters			
		Coefficient	Slope	Intercept	
	µg/L	R^2	а	b	
Chloroethene					
1,1-Dichloroethene	1,900	0.88	1.5	-350	
trans-1,2-Dichloroethene	1,900	0.87	1.5	-380	
cis-1,2-Dichloroethene	1,500	0.93	1.9	-360	
Trichloroethene	1,700	0.97	1.5	-240	
Tetrachloroethene	1,200	0.93	2.0	-350	
Benzene	1,600	0.87	2.0	-390	
Toluene	1,500	0.90	2.0	-430	
Ethylbenzene	1,600	0.85	2.0	-270	
o-Xylene	1,400	0.94	2.1	-410	
m/p-Xylenes	1,300	0.92	2.2	-470	
MTBE	1,700	0.82	2.3	-580	

Table 14 Range of application data.

Robustness

The *robustness* of the product against variations in several parameters was investigated and expressed as an effect on trueness, given as R in Table 15.

For details on the statistical tests performed please refer to the Verification protocol /1/.

Table 15Robustness (R, %) under controlled variations, using the sample dispenser and standpipe.
R values significantly different (95% confidence level, two-sided t-test) from 100% are
marked bold.

Compound	Sampe dispenser Ionic strength ¹ Exposure time ²			Concen- tration	Stand- pipe Sampling depth	
	Low	High	Short	Long	Variation ³	Deep ⁴
	R	R	R	R	R	R
	%	%	%	%	%	%
Chloroethene						
1,1-Dichloroethene	89	86	78	78	83	111
trans-1,2-Dichloroethene	94	121	100	102	116	112
cis-1,2-Dichloroethene	85	114	94	93	99	108
Trichloroethene	83	102	80	91	102	120
Tetrachloroethene	96	100	91	90	90	106
Benzene	80	95	80	90	108	105
Toluene	76	94	81	88	95	107
Ethylbenzene	75	87	77	96	95	101
o-Xylene	72	80	77	84	91	101
m/p-Xylenes	78	84	82	88	87	102
МТВЕ	67	96	68	87	82	100

¹ Low=10 mS/m, high = 100 mS/m, reference 35 mS/m

² Short= 3 days, long = 9 days, reference = 6 days

³ Successive intervals of 20%, 50% and 80% of measuring range

⁴ Deep= 5 m below surface (mbs), reference = 0.5 mbs

The test with variations in ionic strength showed lower recovery of trichloroethene, BTEX and MTBE at low ionic strength. One reason for the differences being significant between the reference level and the experiment at low conductivity is a low standard deviation in experiment at low conductivity.

The test with variation in sampling time showed lower recovery of BTEX and MTBE at short sampling times. The effect of sampling time was not systematic, since also at longer times the recovery was lower than at the reference level for most components, al-though not statistically significant.

The test with increasing concentration produced a trueness that was not significantly different from the trueness on the reference level, for any compound (two-sided t-test assuming unequal variances, $\alpha = 0.05$).

The robustness against sampling depth was investigated; the results are shown in Table 15. A t-test of the sampler results (two-sided t-test assuming equal variances, $\alpha = 0.05$) did not reveal a significant difference of the results at 0.5 and 5 m depth, except for one compound. Only trichloroethene exhibited a significantly higher concentration at 5 m depth.

7.1.2 Field test

Data summary

The field testing results are summarized in Table 17 - Table 21. Wells C8, C11 and C14 are located at Søborg, Denmark while B17 and B18 are located in Farum, Denmark.

Some results were below the limit of detection. To calculate the ratio between samples and reference samples and for performing a paired t-test, generic rules for handling non-detects were established, these are listed in Table 16.

s.	
	s.

Problem	Method/rule
4 reference samples to be compared with 3 samples	The sample result was compared to the av- erage of the reference sample taken before and after the sample
1-2 of the 3 results to compare (2 reference samples and 1 sample) are below limit of de- tection	Concentrations below limit of detection were set to a value equal to half of the respective LoD
All 3 results to be compared (2 reference samples and 1 sample) below limit of detection	All concentrations below limit of detection were set to a value equal to half of the high- est LoD

For some compounds the reference samples and/or the analyses of the sampler has been both above and below the limit of detection, while the limit of detection also can vary. E.g. for tran-1,2-dichloroethene the reference samples were <0.40, <0.20, 0.11 and <0.02. Then that is given as an interval that is <0.02 - < 0.40, and therefore not showing that as result above limit of detection (0.11) has been determined. The corresponding sampler results were all below limit of detection. The rules of calculation in Table 16 cause that the ratio is calculated to 1-24.

Well C8	Ref. samples	Ref. samples Sampler	
	μg/L	μg/L	-
Chloroethene	0.87-1.3	<1.8-<2.9	0.88-1.3
1,1-Dichloroethene	<0.02-<0.40	<1.9-<2.9	1.0
trans-1,2-Dichloroethene	<0.02-<0.40	<1.8-<2.9	1.0-24
cis-1,2-Dichloroethene	<0.02-<0.40	<1.9-<2.9	2.2-27
Trichloroethene	<0.02-<0.40	<1.8-<2.9	1.0-15
Tetrachloroethene	<0.02-0.59	<1.8-<2.9	1.0-2.6
Benzene	640-1000	750-1600	1.2-1.7
Toluene	<0.02-0.50	3.4-9.6	22-170
Ethylbenzene	<0.02-<0.40	110-170	1,100-13,000
o-Xylene	<0.02-1.0	5.7-11	6.1-25
m/p-Xylene	<0.02-<0.40	5.0-6.5	43-500
МТВЕ	1.3-<2	<1.8-<2.9	0.61-1.8

Table 17 Results from field testing, well C8.

Table 18Results from field testing, well C11.

Well C11	Ref. samples	Sampler	Ratio
	µg/L	μg/L	-
Chloroethene	17-30	6.7-15	0.24-0.63
1,1-Dichloroethene	0.29-<1	<0.68-<0.83	0.82-1.1
trans-1,2-Dichloroethene	<1-1.5	1.1-2.3	0.76-2.0
cis-1,2-Dichloroethene	27-89	29-69	0.81-12
Trichloroethene	<1-2.4	<0.83-1.1	0.41-0.57
Tetrachloroethene	0.068-1.3	<0,68-<0.83	0.59-42
Benzene	167-4800	2700-5000	0.71-33
Toluene	2.2-3.6	1.8-4.7	0.61-2.0
Ethylbenzene	6.1-14	1.5-3.8	0.12-0.45
o-Xylene	0.28-<1	<0.68-<0.83	1.1-2.3
m/p-Xylene	0.75-2.2	<0.68-<0.83	0.19-0.42
MTBE	1.76-<5	1.2-2.3	1.2-1.6

Table 19Results from field testing, well C14.

Well C14	Ref. samples	Sampler	Ratio
	µg/L	μg/L	-
Chloroethene	17-45	28-77	1.2-2.1
1,1-Dichloroethene	<0.40	<1.1-<1.3	1.0
trans-1,2-Dichloroethene	1.6-2.2	2.6-10	1.4-6.2
cis-1,2-Dichloroethene	26-58	23-186	0.45-4.8
Trichloroethene	5.9-25	3.0-21	0.19-3.1
Tetrachloroethene	4.4-18	2.6-17	0.44-3.6
Benzene	880-2300	1300-5600	0.78-3.8
Toluene	2.9-4.4	12-18	3.1-4.6
Ethylbenzene	20-35	77-92	2.6-3.3
o-Xylene	2.3-5.3	14-33	5.5-7.9
m/p-Xylene	4.2-5.9	11-54	2.2-11
МТВЕ	2.7-3.4	1.2-17	0.36-5.4

Table 20	Results from field testing,	well B17.
----------	-----------------------------	-----------

Well B17	Ref. samples	Sampler	Ratio
	μg/L	μg/L	-
Chloroethene	<0.02-<0.20	<0.82-<0.92	1.0
1,1-Dichloroethene	<0.02-<0.20	<0.82-<0.92	1.0
trans-1,2-Dichloroethene	<0.02-<0.20	<0.82-<0.92	1.0
cis-1,2-Dichloroethene	<0.02-<0.20	<0.82-<0.92	1.0-29
Trichloroethene	<0.02-<0.20	<0.82-<0.92	1.0
Tetrachloroethene	<0.02-1.4	<0.82-<0.92	0.68-1.0
Benzene	<0.02-0.46	<0,92-4,2	2.0-420
Toluene	<0.02-1.4	<0.8-<0.92	0.65-1.0
Ethylbenzene	<0.02-0.14	<0.8-<0.92	1.0-5.9
o-Xylene	<0.02-0.045	<0.9-0.92	17-53
m/p-Xylene	<0.02-0.084	<0.8-<0.92	1.0-8.8
MTBE	2.9-111	3.0-50	0.83-1.4

Well B18	Ref. samples	Sampler	Ratio
	µg/L	µg/L	-
Chloroethene	<0.02-<0.20	<0.7-<0.79	1.0
1,1-Dichloroethene	<0.02-<0.20	<0.7-<0.79	1.0
trans-1,2-Dichloroethene	<0.02-<0.20	<0.7-<0.79	1.0
cis-1,2-Dichloroethene	<0.02-<0.20	<0.7-<0.79	1.0
Trichloroethene	<0.02-<0.20	<0.7-<0.79	1.0
Tetrachloroethene	<0.02-<0.20	<0.7-<0.79	1.0
Benzene	<0.02	<0.7-<0.79	1.0
Toluene	<0.02	<0.7-<0.79	1.0
Ethylbenzene	<0.02	<0.7-<0.79	1.0
o-Xylene	<0.02	<0.7-<0.79	1.0
m/p-Xylene	<0.02	<0.7-<0.79	1.0
MTBE	<0.1	<0.7-<0.79	1.0

Table 21 Results from field testing, well B18.

At first reference sampling occasion, the general groundwater chemistry was analyzed. The results are summarized in Table 22, while all data are given in Appendix 5.

The ionic strength was highest in Søborg.

Site	Søborg (3 wells)		Farum (2 wells)	
	Average	Standard de- viation	Average	Standard de- viation
	mg/L	mg/L	mg/L	mg/L
Са	233	15	125	7.1
Mg	25	3.1	8.0	1.1
К	4.7	0.4	1.7	0.14
Na	120	36	19	2.8
Fe	5.2	2.8	1.5	0.49
Ammonium	0.77	0.14	0.46	0.53
Nitrate	<0.5	-	<0.5-0.84	-
Chloride	340	62	53	22
Fluoride	0.30	0.015	0.28	0.042
Sulphate	157	40	75	23
Bicarbonate	482	81	315	28
NVOC (DOC)	3.0	0.74	5.9	4.5
Ion strength (mol/L)	0.028	0.0012	0.012	0.00055
Field measurements				
Conductivity (µS/cm)	2,020	156	733	32
pH (-)	7.2	0.081	6.9	0.10

Table 22Mean groundwater chemistry at field sites.

Sample to reference sample ratio

It was tested whether the Sorbisense sampler results were significantly different from the reference sample results in a paired t-test. The differences were significant for toluene, ethylbenzene and o-xylene, see Table 23. For all compounds the ratio between sample and reference sample is given.

Parameter	Ratio	Part of data below LoD
	-	%
Chloroethene	0.24-2.1	49
1,1-Dichloroethene	0.82-1.1	91
trans-1,2-Dichloroethene	0.76-24	60
cis-1,2-Dichloroethene	0.45-29	51
Trichloroethene	0.19-15	63
Tetrachloroethene	0.44-4.2	69
Benzene	0.71-420	31
Toluene	0.61-170	46
Ethylbenzene	0.12-13,000	49
o-Xylene	1.0-50	46
m/p-Xylene	0.19-500	60
MTBE	0.36-5.4	34

Table 23 Results from paired t-test, trueness in the field. Significant difference is marked in bold.

Precision

The precision of the measurements was expressed as the range of RSD, encountered for the wells, both for the reference samples and the samplers. In the case of values below LoD, general rules were established for the calculation and are listed in Table 24. The results are reported in Table 25.

Table 24Calculation rules used for calculation of relative standard deviation (RSD).

Problem	Method/rule
Result below limit of detection	Concentrations below limit of detection were set to
	a value equal to half of the corresponding detection
	limit
Several results below limit of detection	RSD was not estimated with less than two values

Table 25	Relative Standard Deviation (RSD) for reference samples and samplers, as range over five
	wells.

	Ref. samples	Samplers
	%	%
Chloroethene	≤ 37	≤ 51
1,1-Dichloroethene	≤ 23	n.a ¹
trans-1,2-Dichloroethene	≤ 39	≤ 66
cis-1,2-Dichloroethene	≤ 95	≤ 113
Trichloroethene	≤ 84	≤ 88
Tetrachloroethene	≤ 84	≤ 88
Benzene	≤ 82	≤ 98
Toluene	≤ 23	≤ 51
Ethylbenzene	≤ 31	≤ 43
o-Xylene	≤ 74	≤ 39
m/p-Xylene	≤ 61	≤ 82
MTBE	≤ 39 (166)	≤ 78 (124) ²

¹ n.a. = not applicable.² The high deviation in parenthesis is due to "drag in" of contamination into well B17 at the first reference sampling.

The high deviation in parenthesis for MTBE is due to "drag in" of contamination from the nearby gasoline contamination into well B17 at the first reference sampling, for further details see Figure 14.

The occurrence of discrepancies between samples and reference samples was investigated. A positive discrepancy was defined as an occasion when the sampler found a measurable concentration, while all reference samples were below the limit of detection. The opposite was defined as a negative discrepancy. It should be noted that a discrepancy may reflect different principles of sampling rather than error on behalf of one of the methods, see Section 7.3.5.

For the type of discrepancy with one reference sample being below LoD, a general rule was established (Table 26). The results are reported in Table 27.

Table 26Calculation rule used for determination of discrepancy with one reference sample being
<LoD.</th>

Problem	Method and rule	
Sampler result below limit of detection, while	Average of the reference sample A (value)	
a concentration is detected in 1 of the 2 ref-	and ½ LoD of reference sample B (below	
erence samples	detection limit).	
	If average > sample LoD = > negative dis-	
	crepancy	

In total 15 measurement sets were compared.

Both types of discrepancies occurred. Positive discrepancies occurred mainly for the three compounds with significant difference in the t-test (Table 23). Details on the identified discrepancies are shown in Table 28.

	positive discrepancy	negative discrepancy
	% (no. samples)	% (IIO. samples)
Chloroethene	0	0
1,1-Dichloroethene	0	0
trans-1,2-Dichloroethene	0	0
cis-1,2-Dichloroethene	0	0
Trichloroethene	0	7 (1/15)
Tetrachloroethene	0	0
Benzene	13 (2/15)	0
Toluene	13 (2/15)	0
Ethylbenzene	20 (3/15)	0
o-Xylene	0	0
m/p-Xylene	20 (3/15)	20 (3/15)
MTBE	0	0

Table 27Frequency of samples with discrepancies. Numbers in brackets (X/Y): X samples giving discrepancies out of totally Y samples.

Table 28	Details on discrepancies.
----------	---------------------------

Compound	Discrepancy type	Reference sample	Samplers
		μg/L	µg/L
Benzene	Sampler measured content, reference	< 0.02	1.3 - 4.2
Toluene	samples not (positive)	< 0.02 - < 0.40	3.4 - 9.5
Ethylbenzene		< 0.02 - < 0.40	110 - 170
m/p-Xylene		< 0.02 - < 0.40	5.0 - 6.5
Trichloroethene	Reference samples measured con-	< 1 - 1.4	< 0.83
m/p-Xylene	tent, sampler not (negative)	<1 - 2.2	< 0.68 - <
			0.83

7.2 Test quality assurance summary

7.2.1 Sample analysis performance data

The performance of the sampler analysis was reported by the vendor as given in Table 29, assuming a water volume sampled within the range used in the verification reported here.

Compound	Limit of detection	Precision	Recovery of spike to samplers	Maximum concentration tested
	μg/L	%	%	μg/L
Chloroethene	0.3	16	59	170
1,1-Dichloroethene	0.3	12	79	170
1,2-Dichloroethene	0.2	11	82	170
Trichloroethene	0.2	11	92	170
Tetrachloroethene	0.2	19	103	170
Benzene	0.2	11	89	170
Toluene	0.1	10	87	170
Ethylbenzene	0.1	11	92	170
o-Xylene	0.2	10	93	170
m/p-Xylenes	0.3	10	92	170
MTBE	0.3	14	88	170

Table 29Performance parameters for sampler analysis reported by the vendor.

The performance data accordingly do not include the salt measurements that are used for concentration calculations in routine application of the samplers.

7.2.2 Reference analysis control data

Control data for the reference analysis are summarized in Table 30 based upon standard and stock solutions in organic solvent. Trueness that was significantly different (95% confidence level, two-sided t-test, laboratory reproducibility used in test) from 100% is indicated by a number in bold.

Compound	VOX stand	ard solution ⁵	VOC stock solution ⁶		Proficiency test	
	Repeat-	Trueness	Repeat-	Trueness	Trueness	
	ability		ability			
	%	%	%	%	%	
Chloroethene	30	110			140	
1,1-Dichloroethene bef.	10	121	1.6	132	131	
1,1-Dichloroethene after	10	97	1.3	105	none	
trans-1,2-Dichloroethene	4	112	1.4	107	110	
cis-1,2-Dichloroethenes	3	109	3.7	103	102	
Trichloroethene	3	105	3.1	96	95	
Tetrachloroethene	2	105	2.8	96	82	
Benzene			2.8	97	104	
Toluene			4.4	93	101	
Ethylbenzene			5.6	143	104	
o-Xylene			4.9	86	400	
m/p-Xylenes			4.0	101	103	
MTBE			2.3	85	90	

Table 30Summary of reference analysis control data. Data for proficiency tests are from /16,17/. 1,1-
dichloroethene results were corrected by the laboratory after completion of the test. In this
table, data is stated both before and after correction.

For 1,1-dichloroethene and ethylbenzene, the trueness with the VOC stock solution was significantly different from 100%.

The laboratory provided data from their routine quality control samples from the period of analysis demonstrating 103 and 98% trueness, respectively for the two compounds. Subsequent control of ethylbenzene trueness with analysis of two independent solutions yielded 98-103% recovery.

Furthermore, the reference laboratory provided documentation for recent participation in a proficiency test /16/ covering VOC in drinking water with trueness data inserted into Table 30. A number in bold was indicated as unsatisfactory by the organizer of the proficiency test.

After completing the reference analysis, the reference laboratory prepared new 1,1dichloroethene standards based upon another batch/product and used these for control analyses. Furthermore, the reference laboratory participated in an additional proficiency test /17/. The overall conclusion was that all results reported should be corrected by a factor of 0.80 for 1,1-dichloroethene, and this was subsequently applied for all test data. After the correction of 1,1-dichloroethene concentrations, the trueness of the analysis of VOX standard solution was 97%, and of the VOC stock solution analysis 105%.

The quality of the reference analyses after correction of the 1,1-dichloroethene concentrations is summarized in Table 31.

Of the 15 reference analyses of VOC stock solution, five were done on original 1.5 mL vials that had not been opened before. Those five analyses produced a trueness of 97-

 $^{^{5}}$ The VOX standard solution was a certified standard solution, was diluted at DHI to 25 µg each VOX/L and contained only chlorinated solvents as indicated.

⁶ The VOC stock solution was prepared at DHI to 10 g each VOC/L and did not contain chloroethene.
107%, for the 11 compounds, in average 101% of the expected values stated in Table 33. The precision of these four analyses ranges from 3-11%, in average 5% (Table 31).

During the test of the product's limit of detection in the standpipe, reference samples of groundwater with concentrations around 2.5 μ g/L were taken at three occasions as 2 or 3 replicates. From the triplicate, a conservative estimate of the LoD was derived, between <0.09 and <0.30 μ g/l for the 11 compounds. All reference analyses of water samples taken as blanks were reported as less than the LoD (<0.02 μ g/L, <0.1 μ g/L for MTBE), also indicating a correct LoD reported by the laboratory.

Table 31Summary of analytical reference performance control, after the correction of 1,1-
dichloroethene concentrations. Data given as range over the tested compounds, with aver-
age in parenthesis.

Control type	Limit of detection	Precision	Trueness
	µg/L	RSD %	%
VOX standard solution	-	-	97-110 (106)
VOC stock solutions ⁷	-	3-11 (5)	97-107 (101)
Groundwater (field)	<0.09-<0.30	-	-
Laboratory quality control	0.008-0.01	5-11	93-110
Proficiency test	-	-	90-140 (106)

The analytical quality control data from the reference laboratory as obtained during the test period are compiled in Table 32.

Compound	Low control concentration ⁸		High control concentration ⁹		Detection limit
	Total RSD	Trueness	Total RSD	Trueness	
	%	%	%	%	μg/L
Chloroethene	9.3	110	8.2	110	0.01
1,1-Dichloroethene	7.9	106	7.6	105	0.01
trans-1,2-	7.7	99	5.9	104	0.008
Dichloroethene					
cis-1,2-	6.5	103	7.0	103	0.01
Dichloroethenes					
Trichloroethene	6.2	99	5.9	102	0.01
Tetrachloroethene	9.3	99	6.0	103	0.009
Benzene	7.7	95	5.6	101	0.008
Toluene	6.7	97	5.9	101	0.008
Ethylbenzene	8.8	100	7.1	101	0.008
o-Xylene	8.0	98	5.6	101	0.008
m/p-Xylenes	9.6	98	5.3	101	0.01
MTBE	11.0	93	6.6	97	0.009

Table 32Compilation of reference laboratory quality control data.

Overall, the reference analysis quality data indicated precision and trueness satisfying the requirements for most compounds but with a concern for high results for chloroethene. For ethylbenzene, an error of preparation of the stock solution was indicated.

⁷ from unopened stock solution vials only.

⁸ Low control concentration is 0.08 μ g/L, 170-219 control samples.

⁹ High control concentration is 0.8 µg/L, 192-232 control samples.

7.2.3 Test system control data

Reference analysis of the water used in laboratory test and water from the test system (dispenser, after 30 minutes and after 6 days) gave results below the LoD (<0.02 μ g/L, <0.1 μ g/L for MTBE) indicating no contamination of either.

Field blank reference analysis for the two field sites showed results below LoD, except for toluene in the field blank sample from the Søborg site (0.04 μ g/L, LoD 0.02 μ g/L). The field blank data did not indicate any substantial contamination with the VOC during field sample handling.

The stability of stock solutions was controlled with reference analyses made of aliquots distributed over the test period, see Figure 9.

Figure 9 Reference analyses of stock solution aliquots used for spiking. The aliquot identifiers correspond to the data forms in Appendix 5.

Over the test period, the stock solution concentrations varied considerably, and for six compounds the mean reference analysis measurements were significantly different from the value calculated from added amounts and volumes of the prepared stock solutions. For these compounds, reference analysis measurements were assumed to be correct, see compounds listed as analyzed under Data source in Table 33. The expected values for the stock solution were only used to calculate expected values in the sample dispenser and the standpipe, for test system control purposes. All performance parameters were calculated against measured data from the reference analyses.

Compound	True value	Data source
-	(g/L)	
1,1-Dichloroethene	9.7	calculated
trans-1,2-Dichloroethene	10.1	calculated
cis-1,2-Dichloroethene	7.70	calculated
Trichloroethene	9.79	analyzed
Tetrachloroethene	9.74	calculated
Benzene	8.98	analyzed
Toluene	9.04	analyzed
Ethylbenzene	13.9	analyzed
o-Xylene	8.90	analyzed
m-Xylene	10.4	calculated
MTBE	8.52	analyzed

Table 33Concentrations in the stock solution.

The dispenser laboratory test system showed stable concentrations after 6 days as measured by reference analysis, and corresponded to the expected values (Table 34, middle column). Conversely, sample measurements under reference conditions (test BA) were lower than the expected values for most compounds (Table 34, right hand column). The deviations of the sampler results from the expected values were correlated to compound volatility, but not to compound polarity, see Figure 10.

Table 34Stability, reference sample concentrations and sample concentrations in the dispenser laboratory test system.

Compound	tory			
	Dispenser			
	Reference sample measurement	Sample measurement		
	after 6 days	over 6 days		
	% of expected value	% of expected value		
Chloroethene				
1,1-Dichloroethene	107	81		
trans-1,2-Dichloroethene	116	71		
cis-1,2-Dichloroethene	114	90		
Trichloroethene	107	70		
Tetrachloroethene	97	72		
Benzene	97	85		
Toluene	112	81		
Ethylbenzene	103	75		
o-Xylene	122	90		
m/p-Xylenes	88	77		
MTBE	112	110		

Figure 10 Deviation of trueness from 100% in dispenser against volatility and polarity of compounds.

In the dispenser, test solution from the dispenser was lead to the sampler through polymer capillaries supplied by the vendor. The plots of difference between sample measurement and true value (calculated from added amounts and volumes of the prepared stock solutions) against log K_{ow} (partitioning coefficient octanol water) and k_H (partitioning coefficient air water) did not support that loss through adsorption should be important (should exhibit inverse relationship between trueness deviation and partitioning coefficient), whereas loss of compounds by evaporation e.g. through the capillaries cannot be excluded (relationship between trueness deviation and Henry's law constant cannot be excluded). Accordingly, dispenser trueness data are not used independently but only as reference for robustness assessments.

The standpipe test system exhibited high reference sample measurements for the samples taken after 2 hours, followed by a lower and stable plateau, see Figure 11. The ini-

tial high reference sample measurements were taken to reflect incomplete mixing in the test system and subsequently, the first reference samples were taken after 4 hours.

Figure 11 Reference sample measurements in standpipe at level 5 times the expected limit of detection. Samples no. 1-2 taken 2 hours after spiking, no. 3-5 taken 2 days after, no. 6-7 taken 6 days after spiking.

The mean reference sample measurements for the 5 last samples were significantly different from the true value calculated from added amounts and volumes of the prepared stock solutions for 8 of 11 compounds at a level of 5 times the expected limit of detection. The concentrations measured for the reference samples relative to the true value decreased with increasing octanol water partitioning coefficient as would be expected with adsorption of compounds to the test system or the sampling system, see Figure 12. The standpipe test system was made of the same materials as the dispenser test system with no adsorption observed, but adsorption to the sampling system with up to 7 samplers suspended in the standpipe cannot be excluded.

Figure 12 Deviation of trueness from 100% in standpipe against polarity of compounds at level 5 times the expected limit of detection.

As reduced test solution concentrations in the standpipe due to adsorption could not be ruled out, reference sample based concentrations were used as true values in standpipe test.

7.3 Test performance observation

7.3.1 True volumes that passed through the samplers

During the tests, the volumes passed through the samplers were determined in two ways: by tracer salt analysis as part of the product, and as a manual measurement of the collected liquid in the laboratory or in the field. In some tests, the difference was a factor of approximately two for all three replicates; see e.g. samples V and CA. The rule for which volume to use was: use the volume measured by the tracer salt method, unless the result is over range, >500 mL. In those few cases, the volumes measured in laboratory or in the field were used.

7.3.2 Direct application tests

The direct application tests H and J were the only laboratory tests that included chloroethene. After the application of the VOX analytical standard (test J) or the standard dilution (test H), the samplers were rinsed with 300 mL of water. In test H, one of the seven replicate samplers exhibited a very high hydraulic resistance. This sampler was excluded from the evaluation of data.

7.3.3 Tests using the sample dispenser

In the tests using the sample dispenser, the relative standard deviation (RSD) of samplers was higher (lower precision) than for the consecutive reference samples. In the tests using the standpipe, the samplers showed a lower RSD (better precision) than the reference samples.

7.3.4 Tests in the standpipe

The reference samples from the standpipe are not true replicates, for two reasons. Firstly, there may be a loss of concentration over time, presumably mainly due to adsorption to the plastic materials that are part of the Sorbisense set-up. Secondly, mixing may be incomplete at the time of the first reference sampling, resulting in too high concentrations at the sampling port, see Figure 11. An indication of that can also be seen at in the test N at 10% of range (reference samples O). For the tests of trueness in the standpipe, it is judged that the variation between replicates is larger than the effect of the above-mentioned reasons for varying concentrations in the standpipe. After Amendment 3, the first sampling was 4 hours after spiking.

7.3.5 Field test in monitoring wells

When testing in the existing groundwater monitoring wells, some unexpected conditions arose. In some cases, action was taken. In all cases, the unexpected conditions were considered when evaluating the results.

When taking reference samples in well C14 at Søborg Hovedgade, a black (oily?) liquid was pumped up at start of pumping. When taking up the Sorbisense equipment, it was covered with the black substance, see Figure 13. The chemical analyses did not show any significant effect of the unknown substance, and all results from the well were included in the validation.

Figure 13 Pictures of Sorbisense equipment retrieved from well C14 at Søborg Hovedgade.

In well B17 at Farum Bytorv, it was difficult to achieve a stable water quality (measurement of pH, conductivity and oxygen) when taking reference samples from this well.

During the first reference sampling, the well was pumped over a longer period than planned in an attempt to achieve stable water quality. At the next reference samplings, the sampling was done after approximately the same pumping time as needed for the other wells to get stable water quality. Further it was not possible to place the Sorbisense equipment in planned depth due to irregularity (bend) in well casing well. All samples and 3 out of 4 reference samples were taken from approximately 1 m above planned depth.

This well was in the periphery of the contamination. The extra pumping at the first reference sampling apparently caused this sample to contain higher concentrations, mainly of MTBE, than the following reference samples. It was not possible to determine how much the difference in sampling level affected the results. The extra pumping and dragging in of contamination from the nearby gasoline hot spot has affected the results of the first sampler, which had higher concentrations than the following samples. The measured MTBE concentrations are shown graphically in Figure 14. All results from well B17 were included in the validation.

Figure 14 MTBE concentrations in well B17 over time in samplers and reference samples.

7.4 Amendments and deviations from the test plan and test protocol

There has been in total four amendments to the test plan. All amendments have been approved. These amendments were made as update of sections and appendices in the test plan. This test report therefore includes the revised sections. An overview of the sections and appendices where the amendments have caused updates is shown in Table 35.

No.	Section	Change
1	Test plan appendix 3.4	Reference sampling strategy in the field
2	Test plan appendix 3.10	Handling of exposed samplers
3	Test plan appendix 3.3	Time of first reference sample from standpipe
4	Test plan appendix 3.2, 3.9	Way of conducting concentration integration test HA
5	Test protocol	Use of statistical methods

Table 35 Overview of updates according to amendments.

During the testing, 31 deviations to the test plan were noticed. Where applicable, the test plan was updated. A list of the deviations is included in Appendix 7.

APPENDIX 1

Terms and definitions used in the test plan

The abbreviations and definitions used in the verification protocol and the test plan are summarized below.

Where discrepancies exist between NOWATECH and US EPA ETV terminology, definitions from both schemes are given.

Word	NOWATECH	US ETV
ADQ	Audit of data quality: An examination	
	of a set of data after is has been col-	
	lected and 100% verified by project	
	personnel, consisting of tracing at	
	least 10% of the test data from origi-	
	nal recording through transferring.	
	calculating, summarizing and report-	
	ing	
AMS Center	Advanced Monitoring Systems Cen-	
	ter at Battelle	
Analysis	Analysis of Sorbisense samplers at	
	the vendor identified laboratory	
Analytical	Independent analytical laboratory	
laboratory	used to analyze reference samples	
Application	The use of a product specified with	
	respect to matrix, target, effect and	
	limitations	
BTEX	Benzene, toluene, ethylbenzene and	
	xylenes	
CEN	European Committee for Standardi-	
	zation	
CWA	CEN Workshop agreement	
Direct applica-	A test design where a standard solu-	
tion	tion is applied directly to the Sorbi-	
	sense samplers	
Discrepancy	Sampler resulting in measurable	
	concentrations while all reference	
	samples are below limit of detection	
	or opposite reference samples with	
	detectable content and all sampler	
	results being below limit of detection	
DOC	Dissolved organic carbon	
DS	Danish Standard	
Effect	The way the target is affected, in this	
	verification the measurement volatile	
	organic contaminants	
	European standard	
EIV	Environmental technology verification	EPA program that develops generic
	(ETV) is an independent (third party)	verification protocols and verifies
	assessment of the performance of a	the performance of innovative envi-
	technology or a product for a speci-	ronmental technologies that have
	fied application, under defined condi-	the potential to improve protection
	tions and adequate quality assurance	or numan nearth and the environ-
Evaluation	Evaluation of test data for a technol-	An examination of the efficiency of
	ogy product for performance and	a technology
	data quality	
Experts	Independent persons qualified on a	Peer reviewers appointed for a veri-
	technology in verification or on verifi-	fication

Word	NOWATECH	US ETV
	cation as a process	
GC	Gas chromatography	
GLP	Good laboratory practice	
Groundwater	Baseline monitoring of groundwater	
monitoring	guality	
GWS	Groundwater sampler	
HDPE	High density polyethylene	
ICP	Induced coupled plasma	
ISO	International Standardization Organi-	
	zation	
k _н	Partitioning coefficient air water	
K _{ow}	Partitioning coefficient octanol water	
Limit of detec-	Calculated from the standard devia-	
tion	tion of replicate measurements at	
LoD	less than 5 times the detection limit	
	evaluated. Corresponding to less	
	than 5% risk of false blanks	
Matrix	The type of material that the product	
	is intended for	
mbs	m below surface	
Method	Generic document that provides	
	rules, guidelines or characteristics for	
	tests or analysis	
MS	Mass spectrometry	
MTBE	Methyl- <i>tert</i> -butylether	
NOWATECH	Nordic Water Technology Verification	
ETV	Centers	
NOWATECH	(ETV) Water Monitoring Center at	
WMC	DHI	
NVOC	Non-Volatile Organic Carbon	
OECD GLP	Organisation for Economic Co-	
	operation and Development, Good	
	Laboratory Practice	
P&T	Purge and trap	
Performance	Parameters that can be documented	
parameters	quantitatively in tests and that pro-	
	vide the relevant information on the	
	performance of an environmental	
<u> </u>	technology product	
Precision	The standard deviation obtained from	
	replicate measurements, nere meas-	
	ducibility conditions	
0.0		
QA Banga of an	The range from the LeD to the high	
Range of ap-	ost concentration with linear re	
plication	sponse	
Poforonco	Applysis by a specified reference	
analyses	method in an accredited (ISO 17025)	
anaryses	laboratory	
Reference	Samples taken for and analyzed by a	
samples	specified reference method in an ac-	
	credited (ISO 17025) laboratory	
Repeatability	The precision obtained under repeat-	
	ability conditions, that is with the	
	same measurement procedure, same	

Word	NOWATECH	US ETV
	operators, same measuring system,	
	same operating conditions and same	
	location, and replicate measurements	
	on the same or similar objects over a	
	short period of time	
Reproducibility	I he precision obtained under repro-	
	ducibility conditions, that is with	
	locations operators measuring sys-	
	tems and replicate measurements	
	on the same or similar objects	
Robustness	% variation in measurements result-	
	ing from defined changes in matrix	
	properties	
RSD	Relative standard deviation in %	
Sample dis-	Test device designed for controlled	
penser	exposure of Sorbisense samplers to	
	test solutions	
Sampler	Sorbisense sorbent cartridge	
Samples	Samples taken with and analyzed	
O a marking a sure	The second secon	
Sampling sys-	The sampling reservoir and venting	
lem	system used to operate the Sorbi-	
SIM	Selected ion monitoring	
SM	Standard Methods for the Examina-	
Sivi	tion of Water and Wastewater latest	
	edition	
Standard	Generic document established by	
otandara	consensus and approved by a rec-	
	ognized standardization body that	
	provides rules, guidelines or charac-	
	teristics for tests or analysis	
Standpipe	Test device designed to simulate a	
-	groundwater well	
Target	The property that is affected by the	
	product, in this verification the target	
(Environ	The area stight and in a first stress of the surface	
(Environ-	adda in the environmental area in a	An all-inclusive term used to de-
nellan lech-		systems, waste treatment proc-
nology	ronmentally harmful than relevant	esses and storage facilities and
	alternatives	site remediation technologies and
		their components that may be util-
		ized to remove pollutants or con-
		taminants from, or to prevent them
		from entering, the environment
Trueness	The % recovery of true value ob-	
	tained either from knowledge on the	
	preparation of test solutions or from	
	measurements with reference meth-	
	ods	
ISA	I echnical system audit	
US EPA	United States Environmental Protec-	
Vendor	The party delivering the product or	The technology developer owner
		or licensee seeking verification

Word	NOWATECH	US ETV
	service to the customer	
Verification	Evaluation of product performance parameters for a specified application under defined conditions and ade- quate quality assurance	Establishing or proving the truth of the performance of a technology under specific, predetermined crite- ria, test plans and adequate data QA procedures
VOC	Volatile organic compounds, here the compounds listed as target compounds/analytical parameters	
VOX	Volatile halogenated organic com- pounds, here the halogenated com- pounds listed as target com- pounds/analytical parameters	
WS	Workshop (under CEN)	

APPENDIX 2

Reference methods and references

1 Reference analysis, VOC

Water samples are taken as 40 mL samples in autosampler vials filled completely from the bottom and allow to overflow.

A precise volume of subsample is transferred from the sampler vial to the airsparger via a sample loop and using helium as the pressure gas. The subsample is purged with helium and the purged compounds trapped on a VOCARB 3000 adsorbent, followed by thermal desorption at 240°C and transfer of desorbed compounds to the gas chromatograph (GC). GC separation is followed by selected ion monitoring and quantification against external standard.

Selectivity is ensured by applying a maximum limit of 20% deviation of mass ratios for the selected masses from reference run.

The equipment used is Tekmar Aquatek 70/Velocity XPT and Agilent 6890 GC/5973 or 5975 MS.

Standard method references are EPA Method 624.2 /11/ and ISO 15680 /12/.

2 General chemistry

Groundwater from wells in the field test will be characterized for general chemistry parameters using the below given methods. Analysis for pH and conductivity is done online in the field.

Parameter	Method	Parameter	Method
рН	DS 287	DOC	EN 1484
Conductivity	DS 288	Iron	SM3500C
Nitrate	EN 10304	Ammonium	DS 224
Fluoride	EN 10304	Sodium	SM3500C
Chloride	EN 10304	Potassium	SM3500C
Bicarbonate	DS 256	Calcium	SM3500C
Sulphate	EN 10304	Magnesium	SM3500C

General chemistry data for groundwater for the laboratory tests, see Appendix 3.7, will be obtained from the water work delivering the water.

3 References

- 1. Grøn, C. Sorbisense GWS40 Passive Sampler. Verification protocol. 2009.
- 2. Battelle. Process Document for US EPA ETV AMS Center and NOWATECH DHI WMC Joint Verification of the Sorbisense Ground Water Sampler. 2009.
- 3. ISO. Guidance on Quality assurance of environmental water sampling and handling. 5667-14. 1998.
- 4. ISO. Water Quality On-line sensors/analysing equipment for water Specifications and prerformance tests. ISO 15839. 2006.
- 5. CEN. Environmental technology verification Soil and groundwater site characterization, monitoring and remediation Technologies. CEN/WS CWA 32. 2008.
- 6. Sandia National Laboratories. Ground Water Sampling Technologies Verification Test Plan. U.S. Environmental Protection Agency. Environmental Technology Verification Program. 1999.
- 7. Grøn, C., Falkenberg, J., and Weber, K. Håndbog i prøvetagning af jord og grundvand. København, Denmark, Amternes Videncenter for Jordforurening. 2003
- 8. U.S.Environmental Protection Agency. Low Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504. 1996. Ground Water Issue.
- 9. ISO. General requirements for the competence of testing and calibration laboratories. ISO 17025. 2005.
- 10. DHI. DHI Quality Manual. 2008.
- 11. US EPA. Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry. Method 624.2. 1995.
- ISO. Water quality -- Gas-chromatographic determination of a number of monocyclic aromatic hydrocarbons, naphthalene and several chlorinated compounds using purge-and-trap and thermal desorption. ISO 15680. 2003.
- International Standardization Organisation. EN ISO 9001. Quality management systems Requirements. 15-11-2008.
- 14. OECD. OECD Principles of Good Laboratory Practice. OECD GLP Document No. 1. 21-1-1998.
- 15. Battelle. Quality Management Plan (QMP) for the ETV Advanced Monitoring Systems Center. Version 7.0. 17-11-2005.
- 16. Analytical Products Group, Inc. November 2008 WS proficiency test performance summary. 26-1-2009.
- 17. Environmental Resource Associates. March 2009 WS proficiency test performance summary. 2009.

APPENDIX 3

In-house test methods

The in-house test methods are the detailed specifications (work instructions) of the tests to be performed including specific information on the practical work planned, Appendices 3.1 to 3.4.

The pre-testing is described in Appendix 3.5 and the check of solutions used in Appendix 3.6.

Reagents are described in Appendix 3.7 and apparatus in Appendix 3.8.

The volumes of solutions used for different experiments are summarized in Appendix 3.9.

The storage and shipping of samples is described in Appendix 3.10.

Direct application of halogenated hydrocarbons standard to samplers

For personal safety and to avoid contamination, wear nitrile gloves for all handling of equipment.

- a) Place 7 samplers in the fume cupboard in a vial stand.
- b) Add the spike (50 μ L of 24.7 μ g/mL VOX standard dilution for 5xLoD, 50 μ L standard solution for 10% of range) directly into the adsorber resin of the sampler using a 50 μ L gas tight syringe.
- c) Place each sampler into a separate 100 mL glass bottle with PTFE-lined screw cap.
- d) Place 3-4 of the 100 mL bottles into a 2 L wide-neck glass bottle with Teflon-lined screw cap.
- e) Let the samplers equilibrate at 4°C for 24 hours at least.
- f) Remove the samplers from the glass bottles.
- g) Connect 3 of the samplers to the sample dispenser using new 1/16" capillaries.
- h) Convey 300 ml (collect in 500 mL graduated cylinders) of water through each sampler during approximately 4 hours. This is done in batches of 2-3 samplers, before the sample dispenser has been used with VOCs, but after the blank test of the sample dispenser.
- i) Prepare the samplers for shipping.

Laboratory sample dispenser

For personal safety and to avoid contamination, wear nitrile gloves for all handling of equipment.

1 Preparations

- a) Start with the clean, empty dispenser, lid attached, air exchange pipe detached from the wash bottle. Make sure the stir bar in the dispenser is positioned in the middle of the dispenser bottom and rotating when stirrer is switched on.
- b) Connect the sampler capillaries to the 1/16 inch fittings. Place the ends of the capillaries above the lid of the lab dispenser to avoid leakage.
- c) Add 35 mL potassium chloride stock solution to the dispenser through the spiking port, using a 100 mL syringe with Luer lock. For the tests with different ionic strength add 10 mL for 10 mS/m or 100 mL for 100 mS/m). Rinse with 100 mL of water.
- d) Fill the dispenser with water (see separate instruction below).
- e) Add the VOC spike to the dispenser (see separate instruction below).
- f) Fill the wash bottle with water up to the 5.5 L-mark 10 .
- g) Add the adequate spike directly to the wash bottle (under the water surface) and close the wash bottle.
- h) Connect the exchange pipe and tighten the fittings.
- i) Start the magnetic stirrers in the wash bottle.
- j) Take down the end of the capillaries from the dispenser. Let at least 1 mL go to drain.
- k) Make sure that 30 minutes have passed since the magnetic stirrers have been started; then, connect a sampler to each capillary.
- 1) Start the magnetic valve timer.
- m) Note the time and possible deviations.

2 Filling the dispenser with water

- a) Attach one end of the PTFE tube to the vertical nozzle of the sampling port. Attach the other end to the water tap (MilliQ).
- b) Open the two-way valve in the lid of the dispenser.
- c) Open the sampling port valve. Open the water tap to fill the dispenser until water overflows from the open two-way valve.
- d) Close the water tap. Close the spiking port valve.
- e) Remove the PTFE tube and close the open ends with tinfoil.
- f) Drain 200 mL of water from the dispenser through the sampling port. Measure conductivity and temperature in the drained water.
- g) Continue with step 1e.

3 Addition of spike to the lab dispenser

- a) Start the dispenser's magnetic stirrer.
- b) Open a stock solution vial with appropriate volume.
- c) Fill the appropriate amount into the suitable gastight syringe with Luer lock, with needle attached.

¹⁰ Removed "using the PTFE tubing" after comment in Battelle's audit report.

- d) Remove the needle from the syringe and connect the syringe to the dispenser's spiking port.
- e) Open the spiking port valve and add the contents to dispenser.
- f) Close the spiking port valve and remove the syringe.
- g) Attach the needle and fill syringe with methanol. Detach the needle and add also the methanol to the dispenser.
- h) Close the spiking valve, and remove the syringe.
- i) Fill a 100 mL syringe with Luer lock with water. Add the water to the dispenser. Close the spiking port valve and remove the syringe.
- j) Close the two-way valve in the lid of the dispenser.
- k) Continue with step 1f.

4 During exposure

- a) Control the amount of liquid that has passed through each sampler after ¹/₂ the sampling time and full sampling time by collecting in pre-weighed 1000 mL bottles.
- b) Take water phase sample from the dispenser after 2 hours, ¹/₂ the sampling time and full sampling time, following the *sampling instruction*.

5 Reference sampling instructions

- a) Wipe the vertical nozzle of the sample tap with acetone-soaked paper tissue. Rinse the nozzle with water from a bottle, dry with paper tissue.
- b) Set the magnetic valves to open.
- c) Open the sample tap and drain 25 mL to waste.
- d) Place the nozzle in a 40 mL P&T vial, open the sample valve by approximately 45 degrees and fill the vial slowly from below. Let the sample overflow for at least 3 seconds. Close the sample tap, and close the vial.
- e) Repeat c) for the 2 following P&T vials.
- f) Start the magnetic valve timer.
- g) Repeat a) to clean the nozzle after sampling.
- h) Store cold 1-5°C and dark for no more than 3 days and transfer to laboratory.

6 End of exposure

- a) Stop both magnetic stirrers.
- b) Open the two-way valve in the lid of the dispenser.
- c) Drain the dispenser through the sample tap, into containers for disposal¹¹.
- d) Remove the samplers and send them for analysis.
- e) Detach the air exchange pipe from the wash bottle¹² and tilt the container towards the sample tap to empty completely.
- f) Detach the magnetic valve from the other side of the wash bottle.
- g) Empty the wash bottle. Attach the air exchange pipe lightly until next use.

¹¹ Changed according to deviation no. 4.

¹² Whenever detaching the connections of the wash bottle, detach the nut on the steel side of the fitting, not on the glass side.

Standpipe

1 Preparations

Wear nitrile gloves for all handling of equipment.

- a) Mount the needed number of samplers with samplers into the empty standpipe. Tighten with the provided strings.
- b) Connect the air hoses¹³ to the lid.
- c) Close the standpipe.
- d) Open the two-way valve in the lid of the standpipe.
- e) Fill the standpipe from the bottom with groundwater, using PTFE tubing, until water overflows from the open two-way valve.
- f) Stop the water flow, close the sampling port valve and remove the PTFE tubing.
- g) Drain 200 mL from the standpipe. Measure conductivity and temperature in the drained water.
- h) Start the circulation pump.
- i) Add the spike to the standpipe (see separate instruction).
- j) Fill the wash bottle with water up to the 5.5 L-mark^{14} .
- k) Add an adequate spike directly to the wash bottle (under the water surface) and close the wash bottle.
- 1) Connect the air exchange pipe.
- m) Start the magnetic stirrer in the wash bottle. Start the magnetic valve timer.
- n) Note the time and possible deviations.

2 Addition of spike to the standpipe

- a) Make sure the magnetic valves are closed.
- b) Open a stock solution vial with appropriate volume.
- c) Fill the appropriate amount into the suitable gastight syringe with Luer lock, with needle attached.
- d) Remove the needle from the syringe and connect the syringe to the standpipe's spiking port.
- e) Open the spiking port valve and add the contents to standpipe.
- f) Close the spiking port valve and remove the syringe.
- g) Attach needle and fill syringe with methanol. Add to standpipe¹⁵.
- h) Close the spiking valve, remove syringe.
- i) Fill a 100 mL syringe with Luer lock with water¹⁶. Add the water to the dispenser. Close the spiking port valve and remove the syringe.
- j) Close the two-way valve in the lid of the standpipe.
- k) Continue with step 1h.

¹³ Deviation no. 14.

¹⁴ Removed "using the PTFE tubing" after comment in Battelle's audit report.

¹⁵ g) and h) added as deviation no. 7.

¹⁶ From test J on, the rinsing was done 10 times with a 10 mL syringe (deviation no. 8).

3 During the exposure

Take water phase sample from the dispenser after 4 hours¹⁷, $\frac{1}{2}$ the sampling time and full sampling time, following the *sampling instruction*.

4 Reference sampling instructions

- a) Wipe the vertical nozzle of the sample tap with acetone-soaked paper tissue. Rinse the nozzle with water from a bottle, dry with paper tissue.
- b) Set the magnetic valves to open.
- c) Open the sample tap and drain 25 mL to waste.
- d) Place the nozzle in a 40 mL P&T vial, open the sample valve by approximately 45 degrees and fill the vial slowly from below. Let the sample overflow for at least 3 seconds. Close the sample tap, and close the vial.
- e) Repeat c) for the 2 following P&T vials.
- f) Start the magnetic valve timer.
- g) Repeat a) to clean the nozzle after sampling.
- h) Store cold 1-5°C and dark for no more than 3 days and transfer to laboratory.

5 End of exposure

- a) Stop the magnetic stirrer in the air wash bottle.
- b) Stop the recirculation pump.
- c) Open the two-way valve in the lid of the standpipe.
- d) Remove the air exchange pipe.
- e) Drain the standpipe into containers for disposal, using the sample tap.
- f) Open the standpipe and take up the sampler.
- g) Remove the samplers and send them for analysis.
- h) Measure the sampled water volume by collecting in 1000 mL pre-weighed glass bottles and weighing.
- i) Tilt the container towards the sample tap to empty completely.
- j) Empty the wash bottle. Attach the air exchange pipe lightly.

¹⁷ Amendment no. 3.

Field sampling

1 Data compilation

First planning step includes data compilation in order to allow for the detailed planning:

Full Address	Well	Well regis-	Contact, name, phone, e-mail
	identifi-	tration	
	cation	number	
Søborg Hovedgade 17-19,	B103	201.5848	Region Hovedstaden, Jens Lerche
Søborg			Mortensen, +45 4820 5333,
			jens.lerche.mortensen@regionh.dk
Søborg Hovedgade 17-19,	C8	201.5855	Region Hovedstaden, Jens Lerche
Søborg			Mortensen, +45 4820 5333,
			jens.lerche.mortensen@regionh.dk
Søborg Hovedgade 17-19,	C11	201.5851	Region Hovedstaden, Jens Lerche
Søborg			Mortensen, +45 4820 5333,
			jens.lerche.mortensen@regionh.dk
Søborg Hovedgade 17-19,	C14	201.5858	Region Hovedstaden, Jens Lerche
Søborg			Mortensen, +45 4820 5333,
			jens.lerche.mortensen@regionh.dk
Farum Bytorv 76, Farum	B17	193.2277	Jord•Miljø, Charlotte Juhl Søe-
			gaard, +45 3582 0402,
			cjs@jordmil.dk
Farum Bytorv 76, Farum	B18	193.2278	Jord•Miljø, Charlotte Juhl Søe-
			gaard, +45 3582 0402,
			cjs@jordmil.dk

Well identification	Filter (mbs) ¹⁸	Diameter (mm)	Groundwater table (mbs)	Geology
C8	11.5-15	63	8.86	Sand
C11	7-13	63	8.9	Sand
C14	6-13	63	9.48	Sand
B17	8.2-15.2	63	9.3	Sand
B18	8.3-15.3	63	9.2	Sand

2 Reference sampling strategy

The second planning step is to select the reference sampling strategy and to select the sampling (0.5-5 mbgwt¹⁹) and reference sampling positions. All selected wells are monitoring wells. The position of the sampler and reference sampling is therefore based on geology, groundwater level and knowledge of contamination (PID monitoring during drilling).

¹⁸ mbs: meter below surface.

¹⁹ mbgwt: m below groundwater table.

Well identification	Sampler position (mbs)	Sampler position to in well groundwater table distance (m)	Reference sampling position (mbs)
C8	13	4.1	13
C11	11	2.1	11
C14	11.5	2	11.5
B17	12	2.7	12
B18	12	2.8	12

3 Sampling

The sampling is done as follows:

- a) Mount a sampling system with a sampler in the well at the selected depth.
- b) Secure the position with the provided string.
- c) Leave the sampler in position for 6 days.
- d) Take up the sampler.
- e) Remove the sampler and send it for analysis.
- f) Repeat twice.

The reference sampling is done as follows, for monitoring wells:

- a) Lower the pump into the well to the selected depth.
- b) The pump is pulled slowly approximately 0.5 m up and down from the selected depth, to remove old water, etc. while pumping at low yield.
- c) The pre-pumping will be done as micro pre-pumping. The pumping must be so low that the draw down is less than 10 cm, if not possible the maximum flow is 0.5 l/minute.
- d) During clean-up, pre-pumping and sampling indicator parameters (pH, dissolved oxygen, conductivity) are measured and noticed every 3-5 minutes.
- e) Samples are taken when pH and conductivity are stable.
- f) The groundwater level is measured before placement of pump, during pre-pumping with an interval of 0.5-5 minutes as well as just before sampling.
- g) Just before sampling the pump is throttled down, ensuring that the groundwater level is rising (measurement). Pump yield is 0.1 l/minute or as minimum so low that the groundwater level is rising.
- h) Fill sample containers from the bottom and allow to overflow minimum 2 times ensuring no head space in the containers, where required. Samples bottles for metal analyses contain conservation media and are only to be filling 90%, no overflow due to loss of conservation media.
- i) Store and preserve samples as prescribed and send to the laboratory.

Reference sampling is done before, between and after each sampling, totally 4 times.

Field blanks are prepared during the first reference sampling at each site. Water is transferred to sample bottles on site and the samples are stored, transported and analyzed as reference samples.

Sampling is done using a Grundfos MP1 pump equipped with 8/10 mm Teflon tubes. The same pump and tube will be used exclusively for the same well every time. The

pumps will not be used for other purposes in between the reference samplings. Pumps are cleaned before first use, new Teflon tubing is used.

Indicator parameters (pH, dissolved oxygen, conductivity, temperature) are measured in a flow through on-line cell.

Pre-testing

Laboratory sample dispenser.

Objective	Test design	Samples
Blank test	Dispenser filled with water	Triplicate reference samples 1) of water, 2) from dispenser directly 30 minutes after addition, and 3) from dispenser after 6 days
VOC stability in dispenser	Dispenser filled with water, spiked to 5xLoD	Triplicate samples 1) of 0.1 g/L VOC solution, 2) from dispenser 30 minutes after addition, and 3) from dispenser after 6 days

Preparation of solutions for reference analysis

1 10 g/L VOC stock solution

Check of concentrations is done initially and each time a subsample is taken out for use.

Initial testing is done by filling a 1,5 mL capped vial with stock solution at -20°C, using a low-flow pipette. Close vial. Produce triplicate vials in this way. Place each of the 1 mL capped vials in a larger capped vial. Store cold 1-5°C and dark for no more than 3 days and transfer to laboratory with information of concentration range.

Check during use: after using part the stock solution in the vial for spiking, fill one 1,5 mL capped vials with the solution using a gas-tight syringe. Close the vial and place it in a larger capped vial. Store cold $1-5^{\circ}$ C and dark for no more than 3 days and transfer to laboratory with information on concentration range. Produce 2 more vials and keep at -20° C for possible future reference.

2 0.1 g/L VOC solution

Check during use is done after using part the solution in the vial for spiking by transferring 1 mL to a cap vial using a low-flow pipette. Close vial, shake well. Produce triplicate vials in this way. Close the vials and place each in a larger capped vial. Store cold 1-5°C and dark for no more than 3 days and transfer to laboratory with information of concentration range.

3 VOX Standard dilution

Check during use is done after using part the stock solution in the 6 mL vial with VOX standard dilution for spiking. Fill three 1.5 mL capped vials with the solution using a gas-tight syringe. Close the vials and place them in a P&T vial. Store cold 1-5°C and dark for no more than 3 days and transfer to laboratory with information of concentration range.

Reagents

1 Water

Laboratory grade water from Millipore system with electrical conductivity below 10 M Ω /cm. Dissolved organic carbon below 0.1 mg/L and target VOC below the limit of detection 0.02 μ g/L is expected and verified in first blank test series.

2 Groundwater

Potable water as obtained from the supply network at DHI. Groundwater characteristics are as follows:

Parameter	Value	Parameter	Value
рН	7.6	DOC	1.5 mg C/L
Conductivity	71 mS/m	Iron	0.02 mg/L
Nitrate	2.4 mg/L	Ammonium	0.058 mg/L
Fluoride	0.62 mg/L	Sodium	30 mg/L
Chloride	44 mg/L	Potassium	3.8 mg/L
Bicarbonate	340 mg/L	Calcium	85 mg/L
Sulphate	21 mg/L	Magnesium	22 mg/L

Target VOC is below the limit of detection 0.02 μ g/L.

3 VOX standard

Standard solution "QTM Volatile Halocarbons Mix" produced by Supelco, purchased from Sigma-Aldrich, product number 48001, lot number LB59726, with analytical certificate, MFG date July 2008, nominal concentrations as follows (among other VOCs):

Compound	Nominal concentration		
	μg/L		
Chloroethene	1998		
1,1-Dichloroethene	2000		
trans-1,2-Dichloroethene	2000		
cis-1,2-Dichloroethene	1951		
Trichloroethene	2000		
Tetrachloroethene	2000		

4 Chemicals

Compound	Producer	Quality	Purity	Batch
1,1-Dichloroethene	Supelco	Analytical standard	99.9%	LB56468
trans-1,2-Dichloroethene	Supelco	Analytical standard	99.9%	LB57511
cis- 1,2-Dichloroethene	Fluka	Analytical standard	99.7%	7333X
Trichloroethene	Fluka	Puriss. p.a.	>99.5%	1368013
Tetrachloroethene	Supelco	Analytical standard	99.9%	LB56979
Benzene	Fluka	Puriss. p.a.	99.9%	1369911
Toluene	Fluka	Puriss. p.a.	>99.7%	1392028
Ethylbenzene	Fluka	Puriss. p.a.	>99.0%	1388758
m-Xylene	Fluka	Puriss. p.a.	>99.0%	1399073
o-Xylene	Fluka	Puriss. p.a.	>99.0%	1406896
MTBE	Fluka	Puriss. p.a.	>99.5%	1399802
Methanol	Fluka	Puriss. p.a.	≥99.8%	1379978
		For trace analysis of		
		chlorinated hydrocarbons		
Potassium chloride	Fluka	Puriss. p.a.	>99.5%	80150

5 10 g/L VOC stock solution

Prepare a 10 g/L solution of each target VOC as follows:

- a) Fill a 250 mL volumetric flask (with glass stopper) with methanol, refrigerate to 20° C and mark the level.
- b) Keep 210 mL methanol in the volumetric flask, place on ice in fume cupboard.
- c) Add the volume indicated below of each chemical using low flow pipettes, starting with the highest boiling compound and keeping the pipette below the methanol surface while emptying. Close the flask after each addition.
- d) Refrigerate flask to -20°C.
- e) Fill the volumetric flask to the new mark with methanol refrigerated to -20°C.
- f) Shake by hand until no phase difference is visible.
- g) Distribute the stock solution into 1.5, 3.5 and 10 ml capped vials using a low flow pipette. Check cap tightness (tight when cannot be twisted), wrap with aluminium foil and place in freezer, -20°C.

Compound	µL pipetted	Density	µg pipetted	Concentration
		g/L		g/L
Chloroethene	-	-	-	-
1,1-Dichloroethene	2 000	1.218	2 436 000	9.74
trans-1,2-Dichloroethene	2 000	1.2565	2 513 000	10.05
cis-1,2-Dichloroethene	1 500	1.2837	1 925 550	7.70
Trichloroethene	1 750	1.4642	2 562 350	10.25
Tetrachloroethene	1 500	1.6227	2 434 050	9.74
Benzene	2 750	0.87865	2 416 288	9.67
Toluene	2 750	0.8669	2 383 975	9.54
Ethylbenzene	2 750	0.867	2 384 250	9.54
o-Xylene	2 750	0.8802	2 420 550	9.68
m-Xylene	3 000	0.8642	2 592 600	10.37
MTBE	3 250	0.74	2 405 000	9.62

6 0.1 g/L VOC solution

Prepare a 0.1 g/L solution from the 10g/L solution as follows, directly before use.

- a) Open a 1.5 mL vial of 10 g/L stock solution.
- b) Fill a 10 mL capped vial with 10 mL of methanol using a low flow pipette at $20^{\circ}C\pm 2^{\circ}C$.
- c) Add 100 μ L of 10 g/L stock solution using a gas tight syringe with cemented needle, keep needle under methanol surface while emptying.
- d) Close the vial, check for tightness.
- e) Shake by hand.
- f) Use after letting the solution equilibrate at room temperature for 1 hour.

7 24.7 µg/L VOX standard dilution for direct application

Prepare a 24.7 μ g/mL stock solution of halogenated hydrocarbons as follows:

- a) Add 6 mL of methanol to a 6 mL cap vial using a low flow pipette.
- b) Transfer 75 μ l of the 2000 μ g/mL volatile hydrocarbon standard to the cap vial using a 50 μ L gas tight syringe, keeping the needle below the methanol surface while emptying.
- c) Close the vial, check for tightness.
- d) Shake by hand.
- e) Use after letting the solution equilibrate at room temperature for 1 hour.

8 205 g/L KCl stock solution

Prepare a 205 g/l stock solution of potassium chloride:

- a) Place a 1000 mL volumetric flask with 200 mL of water.
- b) Weigh the flask with water.
- c) Add portions of KCl dried at 105°C overnight and shake well.
- d) When all 205 g of KCl is dissolved, allow the solution to equilibrate to room temperature.
- e) Fill the flask to the mark.
- f) Transfer to a 1000 mL glass bottle and close with a blue cap screw lid.

Apparatus

1 Glass syringes and adapters

- a) 1 gas tight glass syringe with stainless steel Luer-lock, 2.5 mL.
- b) 1 gas tight glass syringe with stainless steel Luer-lock, 5 mL.
- c) 1 gas tight glass syringe with stainless steel Luer-lock, 10 mL.
- d) 1 stainless steel Luer/Luer adapter with valve, each for lab dispenser and standpipe.
- e) 6 needles with Luer adapter, 22 ga (0.394 mm ID).
- f) 1 gas tight syringes with fixed needle, 25 μ L.
- g) 2 gas tight syringes with fixed needle, 50 μ L.
- h) 1 gas tight syringe with fixed needle, 100 μ L.
- i) 1 gas tight syringe with fixed needle, 500 μ L.
- j) 1 gas tight syringe with fixed needle, 1000 μ L.
- k) Glass syringe with Luer lock, 100 mL.

2 Glassware

- a) Volumetric flasks 250 mL and 1000 mL with glass stopper.
- b) Low flow glass pipettes at 250, 500, 7500, 1000, 1250, 1500, 2000 and 2500 $\mu L.$
- c) 3 stir bars, glass coated.
- d) Capped vials for 1.5, 3.5, and 10 mL, caps with PTFE seals.
- e) 25 mL Erlenmeyer flask with mark.
- f) 200 mL Erlenmeyer flask with mark.
- g) 1000 mL bottle with blue screw cap.
- h) 1000 mL bottles with red screw cap.
- i) 500 mL graduated cylinders.

3 Miscellaneous

- a) Micropipettes with tips at 100 μ L, 1 mL and 5 mL.
- b) Dedicated, water flushed PTFE tubes, 8x6 mm diameter.
- c) Nitrile gloves.

4 Field

- a) Grundfos MP1 pump.
- b) Transformer box.
- c) 220 V generator.
- d) Dedicated, water flushed 10 mm PTFE tubes.
- e) On-line flow through devices (WTW) for monitoring of indicator parameters (pH, dissolved oxygen, conductivity).

Spike volumes and solutions

Experiment	Lab dispenser or	Wash bottle	Solution
	standpipe (mL)	(mL)	
Н	0.050		VOX standard dilution
L	0.050		VOX standard
BA	4.00	0.55	10 g/L VOC stock solution
DA	4.00	0.55	10 g/L VOC stock solution
EA	4.00	0.55	10 g/L VOC stock solution
FA	4.00	0.55	10 g/L VOC stock solution
GA	4.00	0.55	10 g/L VOC stock solution
HA, first step ²⁰	1.50	0.2	10 g/L VOC stock solution
HA, second step	2.50	0.35	10 g/L VOC stock solution
HA, third step	2.00	0.30	10 g/L VOC stock solution
J	2.50	0.125	0.1 g/L VOC solution
Ν	2.00	0.10	10 g/L VOC stock solution
Р	5.00	0.25	10 g/L VOC stock solution
R	10.00	0.50	10 g/L VOC stock solution
Т	15.00	0.80	10 g/L VOC stock solution
V	20.00	1.00	10 g/L VOC stock solution
CA	10.00	0.50	10 g/L VOC stock solution

²⁰ Changes to test HA spiking volumes are part of Amendment no. 4.

Managing, storing and shipping of samples/samplers

1 Managing samples

- a) Prior to each individual test, the sampling responsible (test technician or field responsible) labels the correct type and number of sample vials, according to information in the test plan and the data forms. For cap vials, only the labels are prepared, to avoid contamination.
- b) The test responsible checks the array of labeled sample bottles and labels against the test plan and the data forms.
- c) After sampling, the sampling responsible takes a photo of the sample vials and sends the photo to the test responsible immediately.
- d) The sampling responsible stores the sample vials.
- e) The test responsible prepares a requisition for analysis, and sends it to the sampling responsible.
- f) The sampling responsible ships the samples, and making sure that they are sent within the maximum stated storage time.
- g) The sampling responsible informs the test responsible immediately when the samples have been sent.
- h) The sampling responsible keeps a copy of the requisition with a note of the date of shipping.

2 Sample storing, reference samples

Water samples are taken in 40 mL P&T vials. Samples are stored cold 1-5°C and dark for no more than 3 days prior to transfer to the laboratory.

3 Sample storing, samplers

Samplers are equipped with protective caps in both ends, placed in transportation tubes and stored cold $1-5^{\circ}C$ and dark for no more than 3 days prior to transfer to the laboratory²¹.

4 Sample shipping, reference samples

Water samples (P&T vials) are sent in cooling boxes with cooling elements. Cap vials with stock solution or stock dilution are placed individually into a P&T vial and may be sent in a non-isolated package, with one cooling element.

5 Sample shipping, samplers

Samplers are packed in the transport tubes in a cardboard box with a cooling element. Samplers are shipped with a courier service, with maximum 48 hours transport time.

²¹ Amendment no. 2.
APPENDIX 4

In-house analytical methods

None

APPENDIX 5

Test data report

Compound	Concentration mg/L					
Date	Dec.1, 2008 A1	Not taken A2	Not taken A3	Jan. 8, 2009 A4	Jan. 8, 2009 A5	Jan. 8, 2009 A6
1,1-Dichloroethene	10,000			10,320	10,400	10,080
trans-1,2-Dichloroethene	11,200			10,900	10,800	10,600
cis-1,2-Dichloroethene	7,840			8,020	8,150	7,590
Trichloroethene	10,400			10,100	9,950	9,520
Tetrachloroethene	10,600			9,660	9,390	9,130
Benzene	8,740			9,550	9,530	9,090
Toluene	8,530			9,230	8,970	8,460
Ethylbenzene	13,100			14,300	13,800	12,800
o-Xylene	8,460			8,750	8,410	7,930
m/p-Xylene	9,270			10,800	10,500	9,970
МТВЕ	10,100			8,320	8,160	7,940

A Check of 10 g/L VOC stock solution, reference analyses, unopened vial.

aA Check of 10 g/L VOC stock solution, reference analyses, used in test BA. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L			
Date Jan. 15, 2009	Usage Date aA1	Spare Vial aA2	Spare Vial aA3	
1,1-Dichloroethene	9,200			
trans-1,2-Dichloroethene	9,410			
cis-1,2-Dichloroethene	6,920			
Trichloroethene	8,960,			
Tetrachloroethene	8,840,			
Benzene	7,850			
Toluene	8,130			
Ethylbenzene	12,800			
o-Xylene	8,140			
m/p-Xylene	8,900			
MTBE	7,250			

Compound	Concentration mg/L			
Date Jan. 23, 2009	Usage Date bA1	Spare Vial bA2	Spare Vial bA3	
1,1-Dichloroethene	9,760			
trans-1,2-Dichloroethene	9,920			
cis-1,2-Dichloroethene	7,700			
Trichloroethene	10,200			
Tetrachloroethene	9,880			
Benzene	8,850			
Toluene	9,430			
Ethylbenzene	15,000			
o-Xylene	9,570			
m/p-Xylene	10,900			
МТВЕ	8,490			

bA Check of 10 g/L VOC stock solution, reference analyses, used in test DA. Spare vials are not sent for analysis, but kept in the freezer.

cA Check of 10 g/L VOC stock solution, reference analyses, used in test EA. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L				
	Usage	Spare	Spare		
Date Jan. 30, 2009	Date	Vial	Vial		
	cA1	cA2	cA3		
1,1-Dichloroethene	10,300				
trans-1,2-Dichloroethene	10,400				
cis-1,2-Dichloroethene	8,180				
Trichloroethene	10,200				
Tetrachloroethene	10,481				
Benzene	9,210				
Toluene	9,800				
Ethylbenzene	15,400				
o-Xylene	9,810				
m/p-Xylene	10,500				
МТВЕ	8460				

Compound	Concentration mg/L			
Date Feb. 6, 2009	Usage Date dA1	Spare Vial dA2	Spare Vial dA3	
1,1-Dichloroethene	10,000			
trans-1,2-Dichloroethene	10,600			
cis-1,2-Dichloroethene	8,130			
Trichloroethene	10,000			
Tetrachloroethene	9,450			
Benzene	9,210			
Toluene	9,710			
Ethylbenzene	15,100			
o-Xylene	9,741			
m/p-Xylene	10,600			
МТВЕ	8,560			

dA Check of 10 g/L VOC stock solution, reference analyses, used in test FA. Spare vials are not sent for analysis, but kept in the freezer.

eA Check of 10 g/L VOC stock solution, reference analyses, used in test GA. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L				
	Usage	Spare	Spare		
Date Feb. 10, 2009	Date	Vial	Vial		
	eA1	eA2	eA3		
1,1-Dichloroethene	10,900				
trans-1,2-Dichloroethene	11,300				
cis-1,2-Dichloroethene	8,040				
Trichloroethene	10,200				
Tetrachloroethene	10,500				
Benzene	9,660				
Toluene	9,690				
Ethylbenzene	15,100				
o-Xylene	9,600				
m/p-Xylene	10,400				
MTBE	9,360				

fA Check of 10 g/L VOC stock solution, reference analyses, used in test HA for 20% of range. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L			
	Usage	Spare	Spare	
Date Mar. 16, 2009	Date	Vial	Vial	
	fA1	fA2	fA3	
1,1-Dichloroethene	9,680			
trans-1,2-Dichloroethene	9,210			
cis-1,2-Dichloroethene	6,960			
Trichloroethene	9,040	not	not	
Tetrachloroethene	9,150	enough	enough	
Benzene	7,910	stock	stock	
Toluene	8,310	left	left	
Ethylbenzene	12,700			
o-Xylene	8,360			
m/p-Xylene	8,860			
МТВЕ	7,440			

gA Check of 10 g/L VOC stock solution, reference analyses, used in test HA for 50% of range. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L				
Date: Mar. 18, 2009	Usage Date gA1	Spare Vial gA2	Spare Vial gA3		
1,1-Dichloroethene					
trans-1,2-Dichloroethene					
cis-1,2-Dichloroethene					
Trichloroethene	not	not	not		
Tetrachloroethene	sent	enough	enough		
Benzene	to	stock	stock		
Toluene	analysis	left	left		
Ethylbenzene					
o-Xylene					
m/p-Xylene					
МТВЕ					

hA Check of 10 g/L VOC stock solution, reference analyses, used in test HA for 80% of range. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L			
Date Mar. 20, 2009	Usage Date	Spare Vial	Spare Vial	
	hA1	hA2	hA3	
1,1-Dichloroethene				
trans-1,2-Dichloroethene				
cis-1,2-Dichloroethene				
Trichloroethene	not	not	not	
Tetrachloroethene	sent	enough	enough	
Benzene	to	stock	stock	
Toluene	analysis	left	left	
Ethylbenzene				
o-Xylene				
m/p-Xylene				
МТВЕ				

iA Check of 10 g/L VOC stock solution, reference analyses, used in test N. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L				
Date Feb. 17, 2009	Usage Date iA1	Spare Vial iA2	Spare Vial iA3		
1,1-Dichloroethene	11,000				
trans-1,2-Dichloroethene	11,400				
cis-1,2-Dichloroethene	8,150				
Trichloroethene	10,300				
Tetrachloroethene	10,800				
Benzene	9,432				
Toluene	9,657				
Ethylbenzene	15,200				
o-Xylene	9,760				
m/p-Xylene	10,500				
МТВЕ	9,379				

jA Check of 10 g/L VOC stock solution, reference analyses, used in test P, first attempt. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L			
	Usage	Spare	Spare	
Date Feb. 24, 2009	Date	Vial	Vial	
	jA1	jA2	jA3	
1,1-Dichloroethene	7,340			
trans-1,2-Dichloroethene	8,220			
cis-1,2-Dichloroethene	7,630			
Trichloroethene	8,480			
Tetrachloroethene	8,380			
Benzene	7,650			
Toluene	8,690			
Ethylbenzene	13,500			
o-Xylene	8,450			
m/p-Xylene	9,720			
МТВЕ	7,950			

jAnew Check of 10 g/L VOC stock solution, reference analyses, used in test P. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L				
Date Mar. 10, 2009	Usage Date jA1 _{new}	Spare Vial jA2 _{new}	Spare Vial jA3 _{new}		
1,1-Dichloroethene	10,000				
trans-1,2-Dichloroethene	10,300				
cis-1,2-Dichloroethene	7,360				
Trichloroethene	9,930				
Tetrachloroethene	11,400				
Benzene	9,360				
Toluene	8,870				
Ethylbenzene	12,300				
o-Xylene	8,560				
m/p-Xylene	10,800				
МТВЕ	8,440				

Compound	Concentration mg/L					
Date Mar. 26, 2009	Usage Date kA1	Spare Vial kA2	Spare Vial kA3			
1,1-Dichloroethene	10,800					
trans-1,2-Dichloroethene	10,700					
cis-1,2-Dichloroethene	7,220					
Trichloroethene	9,610		not			
Tetrachloroethene	10,700		enough			
Benzene	9,780		stock			
Toluene	8,900		left			
Ethylbenzene	13,700					
o-Xylene	8,510					
m/p-Xylene	9,370					
MTBE	8,470					

kA Check of 10 g/L VOC stock solution, reference analyses, used in test R. Spare vials are not sent for analysis, but kept in the freezer.

IA Check of 10 g/L VOC stock solution, reference analyses, used in test T. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L					
Date: not taken	Usage Date IA1	Spare Vial IA2	Spare Vial IA3			
1,1-Dichloroethene						
trans-1,2-Dichloroethene						
cis-1,2-Dichloroethene						
Trichloroethene	not	not	not			
Tetrachloroethene	enough	enough	enough			
Benzene	stock	stock	stock			
Toluene	left	left	left			
Ethylbenzene						
o-Xylene						
m/p-Xylene						
MTBE						

Compound	Concentration mg/L					
Date Apr. 20, 2009. un-	Usage	Spare	Spare			
opened stock vial sent	Date	Vial	Vial			
for analysis, since not	mA1	mA2	mA3			
enough used stock left						
1,1-Dichloroethene	11,400					
trans-1,2-Dichloroethene	10,200					
cis-1,2-Dichloroethene	7,730					
Trichloroethene	10,000	not	not			
Tetrachloroethene	9,720	enough	enough			
Benzene	8,910	stock	stock			
Toluene	9,240	left	left			
Ethylbenzene	13,300					
o-Xylene	9,440					
m/p-Xylene	11,300					
МТВЕ	9,500					

mA Check of 10 g/L VOC stock solution, reference analyses, used in test V. Spare vials are not sent for analysis, but kept in the freezer.

nA Check of 10 g/L VOC stock solution, reference analyses, used in test CA. Spare vials are not sent for analysis, but kept in the freezer.

Compound	Concentration mg/L					
	Usage	Spare	Spare			
Date: not taken, see de-	Date	Vial	Vial			
viation nr. 27						
	nA1	nA2	nA3			
1,1-Dichloroethene						
trans-1,2-Dichloroethene						
cis-1,2-Dichloroethene						
Trichloroethene						
Tetrachloroethene						
Benzene						
Toluene						
Ethylbenzene						
o-Xylene						
m/p-Xylene						
MTBE						

Compound	Concentration mg/L					
	Preparation	Not taken	Not taken			
Date Nov. 18, 2008	Date					
	B1	B2	B3			
1,1-Dichloroethene	93.6					
trans-1,2-Dichloroethene	107					
cis-1,2-Dichloroethene	75.3					
Trichloroethene	100					
Tetrachloroethene	102					
Benzene	83.7					
Toluene	83.3					
Ethylbenzene	128					
o-Xylene	82.7					
m/p-Xylene	90					
MTBE	98.4					

B Check of 0.1 g/L VOC solution, reference analyses, used in lab dispenser pre-testing.

aB Check of 0.1 g/L VOC solution, reference analyses, used in test J.

Compound	Concentration mg/L					
	Preparation	Preparation	Preparation			
Date Feb. 10, 2009	Date	Date	Date			
	aB1	aB2	aB3			
1,1-Dichloroethene	102	96.0	97.6			
trans-1,2-Dichloroethene	99.7	97.9	99.9			
cis-1,2-Dichloroethene	86.1	83.4	85.7			
Trichloroethene	96.2	93	94.5			
Tetrachloroethene	95.9	93.1	95.1			
Benzene	91.1	90.7	91.4			
Toluene	86.2	83.9	86.6			
Ethylbenzene	141	138	137			
o-Xylene	89.4	87.5	88			
m/p-Xylene	95.8	95.7	96.3			
MTBE	88.3	88	88			

Compound	Concentration mg/L				
-		-	-		
	Preparation	Preparation	Preparation		
Date Nov. 18, 2008	Date	Date	Date		
	C1	C2	C3		
Chloroethene	17.8	32.8	31.2		
1,1-Dichloroethene	21.3	26.2	24.1		
trans-1,2-Dichloroethene	26.6	28.9	27.2		
cis-1,2-Dichloroethene	25.9	27.1	25.5		
Trichloroethene	26.2	26.4	24.9		
Tetrachloroethene	26.4	26.0	25.2		

C Check of VOX standard dilution, reference analyses.

aD Check of MiliQ water from tap.

Compound	(Concentration µg	/L
Date Nov. 12, 2008	Sample 1 aD1	Sample 2 aD2	Sample 3 aD3
Chloroethene	<0.0200	<0.0200	<0.0200
1,1-Dichloroethene	<0.0200	<0.0200	<0.0200
trans-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200
cis-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200
Trichloroethene	<0.0200	<0.0200	<0.0200
Tetrachloroethene	<0.0200	<0.0200	<0.0200
Benzene	<0.0200	<0.0200	<0.0200
Toluene	<0.0200	<0.0200	<0.0200
Ethylbenzene	<0.0200	<0.0200	<0.0200
o-Xylene	<0.0200	<0.0200	<0.0200
m/p-Xylene	<0.0200	<0.0200	<0.0200
MTBE	<0.100	<0.100	<0.100

Compound	Concentration µg/L					
Date Nov. 12, 2008	Sample 1 bD1	Sample 2 bD2	Sample 3 bD3			
Chloroethene	<0.0200	<0.0200	<0.0200			
1,1-Dichloroethene	<0.0200	<0.0200	<0.0200			
trans-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200			
cis-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200			
Trichloroethene	<0.0200	<0.0200	<0.0200			
Tetrachloroethene	<0.0200	<0.0200	<0.0200			
Benzene	<0.0200	<0.0200	<0.0200			
Toluene	<0.0200	<0.0200	<0.0200			
Ethylbenzene	<0.0200	<0.0200	<0.0200			
o-Xylene	<0.0200	<0.0200	<0.0200			
m/p-Xylene	<0.0200	<0.0200	<0.0200			
MTBE	<0.100	<0.100	<0.100			

bD Check of water from lab dispenser sample tap after 30 minutes.

D Check of water from lab dispenser sample tap after 6 days

Compound	. (Concentration µg	J/L
Date Nov. 18, 2008	Sample 1 D1	Sample 2 D2	Sample 3 D3
Chloroethene	<0.0200	<0.0200	<0.0200
1,1-Dichloroethene	<0.0200	<0.0200	<0.0200
trans-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200
cis-1,2-Dichloroethene	<0.0200	<0.0200	<0.0200
Trichloroethene	<0.0200	<0.0200	<0.0200
Tetrachloroethene	<0.0200	<0.0200	<0.0200
Benzene	<0.0200	<0.0200	<0.0200
Toluene	<0.0200	<0.0200	<0.0200
Ethylbenzene	<0.0200	<0.0200	<0.0200
o-Xylene	<0.0200	<0.0200	<0.0200
m/p-Xylene	<0.0200	<0.0200	<0.0200
MTBE	<0.100	<0.100	<0.100

Compound		Concentration µg/L							
Date Dec. 1, 2008									
	E1	E2	E3	E4	E5	E6	E7	E8	E9
1,1-Dichloroethene	12.4	12.6	12.5	11.4	11.6	12.1	12.5	12.6	12.7
trans-1,2-Dichloroethene	12.9	13.5	13	12.4	12.2	12.8	13.2	13.2	13.5
cis-1,2-Dichloroethene	13.2	13.3	12.9	13.2	12.8	13.2	13.8	13.9	13.8
Trichloroethene	17.3	17.8	17.3	17.5	17.1	17.7	18.3	18.2	18.2
Tetrachloroethene	12.9	13.2	12.9	13	12.8	13.2	13.8	13.6	13.6
Benzene	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Toluene	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ethylbenzene	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
o-Xylene	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
m/p-Xylene	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
MTBE	11.8	11.8	11.6	11.2	11.1	11.4	11.8	11.9	12.1

E VOC stability check of sample dispenser, reference samples after 30 minutes, see deviation no. 1.

aE VOC stability check of sample dispenser, reference samples after 6 days.

Compound	Concentration µg/L					
Date Dec. 7, 2008	Sample 1 aE1	Sample 2 aE2	Sample 3 aE3			
1,1-Dichloroethene	10.3	10.4	10.6			
trans-1,2-Dichloroethene	11.4	11.7	12			
cis-1,2-Dichloroethene	7.99	9.85	8.5			
Trichloroethene	10.2	10.6	10.7			
Tetrachloroethene	10.2	9.13	9.09			
Benzene	8.38	8.69	8.98			
Toluene	9.8	10.3	10.3			
Ethylbenzene	14.4	14.2	14.4			
o-Xylene	10.9	10.9	10.8			
m/p-Xylene	9.22	9.1	9			
MTBE	9.27	9.61	9.83			

Compound			Mas	ss on sampler	μg		. 2
Date of spiking: Nov. 18, 2009	ID 1008-237	ID 1008-238	ID 1008-239	ID 1008-240	ID 1008-41	ID 1008-242	ID 1008-243
Temperature: room temperature	H1	H2	H3	H4	H5	H6	H7
Chloroethene	0	0.025	0	0	0	0	0.05
1,1-Dichloroethene	0.725	0.625	1.68	0.525	0.700	0.575	0.725
trans-1,2-Dichloroethene	0.725	1.00	1.68	0.725	0.550	0.675	0.825
cis-1,2-Dichloroethene	2.05	1.55	1.48	1.38	1.33	1.28	1.35
Trichloroethene	1.88	1.53	1.48	1.40	1.38	1.35	1.38
Tetrachloroethene	2.15	1.48	1.48	1.20	1.25	1.18	1.28
Date of rinsing: Nov. 20, 2009							
mL passed for rinsing (measured)	<10	300	300	300	300	300	300
mL passed for rinsing (by tracer salt)	5	272	276	277	268	272	260

Compound
H LoD test direct application, samples

Compound			Concentr	ation µg/L		0		Dates	Temperatures
	ID 1008-0209	ID 1008-0210	ID -0211	ID -0212	ID -0213	ID -0214	ID -0215		
	J1	J2	J3	J4	J5	J6	J7		
1,1-Dichloroethene	-0.22	-0.09	0.00	0.00	0.00		0.00	Set up	Set up
trans-1,2-Dichloroethene	2.88	2.33	1.24	3.73	3.60		3.83	Feb. 10, 2009	13.6°C
cis-1,2-Dichloroethene	3.10	1.96	0.62	1.37	1.46		0.92	Sampled	Sampled
Trichloroethene	16.61	3.83	0.93	-20.39	-22.05		-29.83	Feb. 16, 2009	21.6°C
Tetrachloroethene	1.99	1.59	1.24	2.74	2.48		2.64	Pressure head	External
Benzene	2.35	1.55	1.12	2.56	2.54		2.45	at set-up	pressure
Toluene	4.43	2.71	3.42	2.49	2.25		1.98	50 cm	0 bar
Ethylbenzene	2.66	2.33	1.24	4.23	3.94		3.56	-	-
o-Xylene	1.55	1.68	0.62	3.36	2.70		2.90	Conductivity	-
m/p-Xylene	2.22	1.87	0.93	3.23	2.25		2.64	at set-up	-
MTBE	5.98	2.80	2.18	4.10	4.28		4.62	69.8 mS/m	-
mL sampled (measured)	105	276	n.a	206	209	no flow	388	-	-
mL sampled (by tracer salt)	113	268	80	201	222	5	189	-	-

J LoD test standpipe, samples. Raw data including values below detection limit and negative values.

K LoD standpipe, reference samples.

Compound			C	oncentration µg/	۲L		
	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7
Date	Feb. 10, 2009	Feb. 10	Feb. 13	Feb. 13	Feb. 13	Feb. 16	Feb. 16
	K1	K2	K3	K4	K5	K6	K7
1,1-Dichloroethene	4.02	3.60	2.76	2.86	2.81	2.71	2.70
trans-1,2-Dichloroethene	3.59	3.61	2.87	2.94	2.96	2.83	2.81
cis-1,2-Dichloroethene	2.70	2.69	2.20	2.26	2.24	2.19	2.16
Trichloroethene	3.42	3.53	2.42	2.45	2.47	2.25	2.26
Tetrachloroethene	3.31	3.42	1.50	1.55	1.55	1.14	1.17
Benzene	3.35	3.42	2.63	2.66	2.68	2.49	2.48
Toluene	3.17	3.27	2.27	2.32	2.32	2.09	2.07
Ethylbenzene	5.04	5.17	2.65	2.69	2.72	2.06	2.00
o-Xylene	3.34	3.43	1.87	1.90	1.91	1.58	1.56
m/p-Xylene	3.83	3.99	1.78	1.82	1.82	1.38	1.40
MTBE	2.97	3.00	2.59	2.60	2.62	2.58	2.55

Compound			Ма	ss on sampler	hð		
Date of spiking Nov. 18, 2009 Temperature: room temp.	ID 1008-230 L1	ID 1008-231 L2	ID 1008-232 L3	ID 1008-233 L4	ID 1008-234 L5	ID 1008-235 L6	ID 1008-236 L7
Chloroethene	69.8	68.3	71.1	63.9	66.8	65.1	52.4
1,1-Dichloroethene	71.8	72.6	71.2	73.1	75.6	70.0	66.3
trans-1,2-Dichloroethene	71.8	72.6	71.2	73.0	75.6	70.0	66.3
cis-1,2-Dichloroethene	100	102	105	103	103	102	103
Trichloroethene	90.8	94.3	101	100	99.8	98.6	97.9
Tetrachloroethene	84.0	89.1	94.2	94.2	95.7	93.1	91.0
Date of rinsing: Nov. 20-21							
mL passed for rinsing (measured)	300	300	300	300	300	300	300
mL passed for rinsing (by tracer salt)	288	279	261	242	259	267	271

L Precision direct application, 10% of range, samples. Note unit: 100 µg represents 200 µg/L in 500 mL.

IN Precision standbide 10% of rande, samble	nples	sam	range.	of	10%	standpipe	Precision	Ν
---	-------	-----	--------	----	-----	-----------	-----------	---

Compound	Co	oncentration µg	I/L	Dates	Temperatures
	ID 1008-0216 N1	ID 1008-0217 N2	ID 1008-0218 N3		
1,1-Dichloroethene	158	148	179	Set up	Set up
trans-1,2-Dichloroethene	186	185	227	Feb. 17, 2009	20.7°C
cis-1,2-Dichloroethene	152	156	185	Sampled	Sampled
Trichloroethene	146	142	171	Feb. 23, 2009	21.6°C
Tetrachloroethene	129	122	152	Pressure head	External
Benzene	154	157	191	at set-up	pressure
Toluene	148	150	183	50 cm	0 bar
Ethylbenzene	186	165	224	-	-
o-Xylene	139	145	174	Conductivity	-
m/p-Xylene	148	148	181	at set-up	-
MTBE	178	192	227	71.0 mS/m	-
mL sampled (measured)	588	140	351	-	-
mL sampled (by tracer salt)	87	168	318	-	-

O Precision standpipe 10%, reference samples.

Compound		Concentration µg/L	
	Sample 1	Sample 2	Sample 3
	Date: Feb. 17, 2009 O1	Date: Feb. 20, 2009 O2	Date: Feb. 23, 2009 O3
1,1-Dichloroethene	289	174	161
trans-1,2-Dichloroethene	295	160	165
cis-1,2-Dichloroethene	210	151	170
Trichloroethene	265	160	175
Tetrachloroethene	210	116	101
Benzene	251	156	158
Toluene	233	161	147
Ethylbenzene	322	200	141
o-Xylene	214	141	133
m/p-Xylene	221	143	121
MTBE	244	165	172

P Precision standbibe 25%, sampl	es.
----------------------------------	-----

Compound	Co	oncentration µg	I/L	Dates	Temperatures
	ID 1008-0866 P1	ID 1008-0867 P2	ID 1008-0868 P3		
1,1-Dichloroethene	517	461	464	Set up	Set up
trans-1,2-Dichloroethene	524	461	466	Mar. 10, 2009	14.0°C
cis-1,2-Dichloroethene	600	520	532	Sampled	Sampled
Trichloroethene	627	556	559	Mar.16, 2009	Not recorded
Tetrachloroethene	505	465	477	Pressure head	External
Benzene	691	610	620	at set-up	pressure
Toluene	610	551	554	50 cm	0 bar
Ethylbenzene	764	716	737	-	-
o-Xylene	592	537	544	Conductivity	-
m/p-Xylene	597	541	554	at set-up	-
MTBE	709	619	636	68.4 mS/m	-
mL sampled (measured)	336	245	217	-	-
mL sampled (by tracer salt)	240	212	191	-	-

Q Precision standpipe 25%, reference samples.

Compound		Concentration µg/L	
	Sample 1	Sample 2	Sample 3
	Date: Mar. 10, 2009	Date: Mar. 13, 2009	Date: Mar. 16, 2009
	Q1 _{new}	Q2	Q3
1,1-Dichloroethene	621	507	466
trans-1,2-Dichloroethene	607	492	612
cis-1,2-Dichloroethene	480	401	448
Trichloroethene	580	467	501
Tetrachloroethene	383	315	350
Benzene	529	448	475
Toluene	508	436	438
Ethylbenzene	582	336	255
o-Xylene	433	400	407
m/p-Xylene	522	453	441
MTBE	568	468	526

R Precision standbibe 50%. Sample	R	Precision	standpipe	50%.	sample
-----------------------------------	---	-----------	-----------	------	--------

Compound	Concentration µg/L			Dates	Temperatures
	ID 1008-0872 R1	ID 1008-0873 R2	ID 1008-0874 R3		
1,1-Dichloroethene	722	723	877	Set up	Set up
trans-1,2-Dichloroethene	715	716	865	Mar. 25, 2009	13.1°C
cis-1,2-Dichloroethene	776	792	904	Sampled	Sampled
Trichloroethene	767	772	894	Apr. 1, 2009	21.0°C
Tetrachloroethene	677	635	742	Pressure head	External
Benzene	918	973	1,061	at set-up	pressure
Toluene	784	770	948	50 cm	0 bar
Ethylbenzene	1,142	1,120	1,268	-	-
o-Xylene	784	763	882	Conductivity	-
m/p-Xylene	784	753	885	at set-up	-
MTBE	952	1,013	1,113	70.4 mS/m	-
mL sampled (measured)	324	372	406	-	-
mL sampled (by tracer salt)	291	303	349	-	-

S Precision standpipe 50%, reference samples.

Compound			
	Sample 1	Sample 2	Sample 3
	Date: Mar. 26, 2009	Date: Mar 29, 2009	Date: Apr. 1, 2009
	S1	S2	S3
1,1-Dichloroethene	912	904	1,128
trans-1,2-Dichloroethene	1,080	1,000	1,070
cis-1,2-Dichloroethene	800	745	782
Trichloroethene	904	871	898
Tetrachloroethene	649	650	686
Benzene	841	818	1,010
Toluene	848	871	829
Ethylbenzene	1,070	1,130	1,020
o-Xylene	718	794	716
m/p-Xylene	756	800	673
MTBE	903	851	928

T Precision standpipe 75% same	les
--------------------------------	-----

Compound	Concentration µg/L		Dates	Temperatures	
	ID 1008-0875 T1	ID 1008-0876 T2	ID 1008-0877 T3		
1,1-Dichloroethene	1,445	1,629	1,788	Set up	Set up
trans-1,2-Dichloroethene	1,439	1,607	1,779	Apr 1, 2009	12.2°C
cis-1,2-Dichloroethene	1,640	1,738	1,895	Sampled	Sampled
Trichloroethene	1,749	1,886	1,998	Apr. 7, 2009	20.1°C
Tetrachloroethene	1,408	1,541	1,611	Pressure head	External
Benzene	1,901	2,032	2,239	at set-up	pressure
Toluene	1,767	1,886	1,949	50 cm	0 bar
Ethylbenzene	2,348	2,524	2,599	-	-
o-Xylene	1,624	1,722	1,821	Conductivity	-
m/p-Xylene	1,660	1,779	1,867	at set-up	-
MTBE	1,938	2,035	2,227	70.9 mS/m	-
mL sampled (measured)	312	231	172	-	-
mL sampled (by tracer salt)	222	177	109	-	-

U Precision standpipe 75%, reference samples.

Compound			
	Sample 1	Sample 2	Sample 3
	Date: April 1, 2009	Date: April 4, 2009	Date: April 7, 2009
	U1	U2	U3
1,1-Dichloroethene	1,830	1,400	1,690
trans-1,2-Dichloroethene	1,750	1,510	1,660
cis-1,2-Dichloroethene	1,230	1,410	1,260
Trichloroethene	1,470	1,440	1,510
Tetrachloroethene	965	919	1,060
Benzene	1,640	1,400	1,590
Toluene	1,270	1,300	1,420
Ethylbenzene	1,340	1,730	1,810
o-Xylene	871	1,230	1,230
m/p-Xylene	880	1,380	1,180
MTBE	1,470	1,400	1,620

V	Precision	standpipe	100%.	samples.
---	-----------	-----------	-------	----------

Compound	Concentration µg/L		Dates	Temperatures	
	ID 0209-0091	ID 0209-0092	ID 0209-0093		
	V1	V2	V3		
1,1-Dichloroethene	3,267	2,913	2,653	Set up	Set up
trans-1,2-Dichloroethene	3,263	2,877	2,664	Apr 17, 2009	15.2°C
cis-1,2-Dichloroethene	3,195	2,879	2,563	Sampled	Sampled
Trichloroethene	2,568	2,511	2,150	Apr. 23, 2009	not recorded
Tetrachloroethene	2,330	2,391	2,106	Pressure head	External
Benzene	3,777	3,585	3,116	at set-up	pressure
Toluene	3,250	3,144	2,725	50 cm	0 bar
Ethylbenzene	3,829	3,838	3,376	-	-
o-Xylene	2,848	2,889	2,453	Conductivity	-
m/p-Xylene	2,809	2,859	2,485	at set-up	-
MTBE	4,688	4,288	3,769	70.9 mS/m	-
mL sampled (measured)	246	281	252	-	-
mL sampled (by tracer salt)	129	169	158	-	-

X Precision standpipe 100%, reference samples.

Compound		Concentration µg/L	
	Sample 1	Sample 2	Sample 3
	Date: April 17, 2009	Date: April 20, 2009	Date: April 23, 2009
	X1	X2	X3
1,1-Dichloroethene	2,000	2,020	1,630
trans-1,2-Dichloroethene	2,050	2,070	1,610
cis-1,2-Dichloroethene	1,720	1,620	1,250
Trichloroethene	1,680	1,980	1,450
Tetrachloroethene	998	1,510	968
Benzene	1,740	1,810	1,390
Toluene	1,430	1,800	1,300
Ethylbenzene	1,580	2,040	1,270
o-Xylene	1,120	1,810	1,150
m/p-Xylene	1,220	1,650	1,070
МТВЕ	2,030	1,920	1,110

Well number C8		Concentration µg/L						
Samples Compound	Start	ID 1008-0830 AA1	ID 1008-0835 AA2	ID 1008-0833 AA3				
Chloroethene		<1.9	<1.8	<2.9	-			
1,1-Dichloroethene		<1.9	<1.9	<2.9				
trans-1,2-Dichloroethene		<1.9	<1.10	<2.9	7			
cis-1,2-Dichloroethene		<1.9	<1.11	<2.9				
Trichloroethene		<1.9	<1.12	<2.9				
Tetrachloroethene		<1.9	<1.13	<2.9				
Benzene		1,115	748	1,638				
Toluene		3.4	9.55	6.06				
Ethylbenzene		169	110	132				
o-Xylene		5.7	10.9	7.48				
m/p-Xylene		6.5	5.33	4.99				
МТВЕ		1.9	<1.8	<2.9		AA General of	chemistry	
L passed (measured)		0.14	0.10	0.10	Parameter	Value	Parameter	Value
L passed (tracer salt)		0.104	0.113	0.070	рН	7.0±0.02	DOC	2.7 mg C/L
Date set up	12-Feb				Conductivity	200±14 mS/m	Iron	6.4 mg/L
Date sampled		18-Feb	24-Feb	2-Mar	Oxygen	0.33±0.32 mg/L	Ammonium	0.79 mg/L
Depth water table set up, mbs	9.05				Nitrate	<0.50 mg/L	Sodium	110 mg/L
Depth water table sampling, mbs		9.06	9.09	9.06	Fluoride	0.28 mg/L	Potassium	4.4 mg/L
Depth top sampler, mbs	13				Chloride	410 mg/L	Calcium	250 mg/L
Depth bottom well, mbs	14.67				Bicarbonate	430 mg/L	Magnesium	26 mg/L
Quality of water in reservoir		Clear	Clear	Clear	Sulphate	120 mg/L		

AA Precision field, samples, and groundwater chemistry.

Δ	Δ	Pro	noision	fiold	rafaranca	samnlas
		FIG	101011	IICIU.		Samues.

Well number C8	Concentration µg/L					
	Sample 1	Sample 2	Sample 3	Sample 4		
	Date 12-Feb	Date 18-Feb	Date 24-Feb	Date 2-Mar		
Compound	AA4	AA5	AA6	AA7		
Chloroethene	0.903	1.17	0.87	1.34		
1,1-Dichloroethene	<0.40	<0.20	<0.02	<0.02		
trans-1,2-Dichloroethene	<0.40	<0.20	0.11	<0.02		
cis-1,2-Dichloroethene	<0.40	0.398	0.0967	<0.02		
Trichloroethene	<0.40	<0.20	0.186	<0.02		
Tetrachloroethene	<0.40	<0.20	0.59	<0.02		
Benzene	1,040	642	-	951		
Toluene	<0.40	<0.20	<0.02	0.502		
Ethylbenzene	<0.40	<0.20	<0.02	<0.02		
o-Xylene	1.04	0.851	<0.02	0.816		
m/p-Xylene	<0.40	<0.20	<0.02	<0.02		
MTBE	<2	1.18	1.78	1.26		

AB Precision field, samples, and droundwater chemisi	AB	Precision f	field. sam	ples. and	aroundwater	chemistr	v.
--	----	-------------	------------	-----------	-------------	----------	----

Well number C11	0	Concentration µg/L						
Samples		ID 1008-0814	ID 1008-0813	ID 1008-0821	The well was located near a remediation pump which oper- ates between defined water levels and can therefore stop and start during the period of sampling. This results in varia- tion in water level in the well			
Compound	Start	AB1	AB2	AB3				
Chloroethene		6.65	15.4	7.19	-			
1,1-Dichloroethene		< 0.83	<0.7	<0.68				
trans-1,2-Dichloroethene		1.77	2.29	1.10				
cis-1,2-Dichloroethene		29.08	67.7	68.7				
Trichloroethene		< 0.83	1.06	0.931				
Tetrachloroethene		< 0.83	<0.7	<0.68				
Benzene		3,341	4,996	2,734				
Toluene		1.77	4.74	2.54				
Ethylbenzene		3.63	3.84	1.52				
o-Xylene		< 0.83	0.74	<0.68				
m/p-Xylene		< 0.83	<0.7	<0.68				
MTBE		2.28	2.04	1.18		AB General	chemistry	
L passed (measured)		0.28	0.40	0.35	Parameter	Value	Parameter	Value
L passed (tracer salt)		0.241	0.306	0.295	pН	6.8±0.04	DOC	3.8 mg C/L
Date set up	12-Feb				Conductivity	210±13 mS/m	Iron	2.0 mg/L
Date sampled		18-Feb	24-Feb	2-Mar	Oxygen	0.74±0.25 mg/L	Ammonium	0.62 mg/L
Depth water table set up, mbs	9.10				Nitrate	<0.50 mg/L	Sodium	160 mg/L
Depth water table sampling, mbs		9.02	8.86	8.61	Fluoride	0.31 mg/L	Potassium	5.2 mg/L
Depth top sampler, mbs	11				Chloride	290 mg/L	Calcium	220 mg/L
Depth bottom well, mbs	12.94				Bicarbonate	580 mg/L	Magnesium	22 mg/L
Quality of water in reservoir		Clear	Clear	Clear	Sulphate	200 mg/L		

Marked in brown: Concentration indicative due to interfering components

AB Precision field, refere	nce samples.					
Well number C11	Concentration µg/L					
	Sample 1	Sample 2	Sample 3	Sample 4		
	Date 12-Feb	Date 18-Feb	Date 24-Feb	Date 2-Mar		
Compound	AB4	AB5	AB6	AB7		
Chloroethene	17	19.5	29.6	29.9		
1,1-Dichloroethene	<1	0.290	0.461	0.372		
trans-1,2-Dichloroethene	<1	1.26	1.37	1.53		
cis-1,2-Dichloroethene	39.8	27.4	81.7	88.7		
Trichloroethene	<1	1.35	2.41	2.14		
Tetrachloroethene	1.3	<0.20	0.0684	<0.4		
Benzene	4,600	4,760	-	167		
Toluene	3.63	2.15	2.5	2.58		
Ethylbenzene	6.12	10.1	13.9	10.7		
o-Xylene	<1	0.284	0.343	<0.4		
m/p-Xylene	<1	1.48	2.16	0.749		
MTBE	<5	1.95	1.76	<2		

Well number C14	9	Concentration µg/L						
Samples Compound	Start	ID 1008-0824 AC1	ID 1008-0816 AC2	ID 1008-0823 AC3				
Chloroethene		27.8	77.3	59.7				
1,1-Dichloroethene		< 1.2	<1.1	<1.30				
trans-1,2-Dichloroethene		10.3	4.96	2.60				
cis-1,2-Dichloroethene		186	32.9	23.2]			
Trichloroethene		3.04	21.0	7.79				
Tetrachloroethene		12.2	16.7	2.60]			
Benzene		1,288	5,586	4,443]			
Toluene		12.3	18.1	12.3				
Ethylbenzene		77.2	91.5	81.1				
o-Xylene		33.2	25.5	14.1				
m/p-Xylene		54.0	18.1	11.4				
MTBE		1.16	17.3	15.1		AC General	chemistry	
L passed (measured)		0.15	0.19	0.15	Parameter	Value	Parameter	Value
L passed (tracer salt)		0.173	0.176	0.154	рН	7.0±0.02	DOC	2.4 mg C/L
Date set up	12-Feb				Conductivity	190±4 mS/m	Iron	7.1 mg/L
Date sampled		18-Feb	24-Feb	2-Mar	Oxygen	0.18±0.02 mg/L	Ammonium	0.89 mg/L
Depth water table set up, mbs	9.56				Nitrate	<0.50 mg/L	Sodium	91 mg/L
Depth water table sampling, mbs		9.58	9.60	9.59	Fluoride	0.30 mg/L	Potassium	4.5 mg/L
Depth top sampler, mbs	11.3				Chloride	320 mg/L	Calcium	230 mg/L
Depth bottom well, mbs	12.32				Bicarbonate	440 mg/L	Magnesium	28 mg/L
Quality of water in reservoir		Slightly cloudy	Clear	Clear	Sulphate	150 mg/L		
		Black sand	Black sand	Black sand				
		on top	on top	on top				

AC Precision field, samples, and groundwater chemistry.

Marked in brown: Concentration indicative due to interfering components

AC	Precision	field.	reference	samples.
/ \U		noid.		Sumples.

Well number C14	Concentration µg/L						
	Sample 1	Sample 2	Sample 3	Sample 4			
	Date 12-Feb	Date 18-Feb	Date 24-Feb	Date 2-Mar			
Compound	AC4	AC5	AC6	AC7			
Chloroethene	16.8	30.6	44.5	38.9			
1,1-Dichloroethene	<0.40	<0.40	<0.4	<0.4			
trans-1,2-Dichloroethene	1.61	1.71	2.15	1.68			
cis-1,2-Dichloroethene	51.3	25.6	57.6	44.6			
Trichloroethene	25.2	6.83	6.62	5.93			
Tetrachloroethene	17.9	4.77	4.4	7.3			
Benzene	1,020	2,280	1,440	882			
Toluene	4.41	3.54	4.38	2.87			
Ethylbenzene	20.1	26.8	34.6	28.2			
o-Xylene	5.3	3.69	2.77	2.34			
m/p-Xylene	4.17	5.93	5.75	4.51			
MTBE	3.14	3.35	3.08	2.72			

Well number B17		Concentration µg/L						
Samples Compound	Start	ID 1008-0812 AD1	ID 1008-0819 AD2	ID 1008-0817 AD3				
Chloroethene	Otart	< 0.82	<0.9	<0.92	-			
1,1-Dichloroethene		< 0.82	<0.9	< 0.92	1			
trans-1,2-Dichloroethene		< 0.82	<0.9	<0.92				
cis-1,2-Dichloroethene		< 0.82	<0.9	<0.92	-			
Trichloroethene		< 0.82	<0.9	<0.92	1			
Tetrachloroethene		< 0.82	<0.9	<0.92]			
Benzene		4.24	1.34	<0.92				
Toluene		< 0.8	<0.9	<0.92				
Ethylbenzene		< 0.8	<0.9	<0.92				
o-Xylene		0.92	<0.9	<0.92				
m/p-Xylene		< 0.8	<0.9	<0.92				
МТВЕ		50.1	8.87	2.99		AD General of	chemistry	
L passed (measured)		0.26	0.25	0.19	Parameter	Value	Parameter	Value
L passed (tracer salt)		0.244	0.231	0.217	pН	7.1±0.02	DOC	9.0 mg C/L
Date set up	12-Feb				Conductivity	74±5 mS/m	Iron	1.1 mg/L
Date sampled		18-Feb	24-Feb	2-Mar	Oxygen	0.15±0.06 mg/L	Ammonium	0.086 mg/L
Depth water table set up, mbs	9.30				Nitrate	<0.50 mg/L	Sodium	21 mg/L
Depth water table sampling, mbs		9.29	9.31	9.23	Fluoride	0.25 mg/L	Potassium	1.8 mg/L
Depth top sampler, mbs	11.0				Chloride	68 mg/L	Calcium	130 mg/L
Depth bottom well, mbs	15.03				Bicarbonate	330 mg/L	Magnesium	8.8 mg/L
Quality of water in reservoir		Clear	Clear	Clear	Sulphate	58 mg/L		

AD Precision field, samples, and groundwater chemistry.

AD	Precision	field	reference	samples
$\pi \nu$		noid,		samples.

Well number B17	Concentration µg/L						
	Sample 1	Sample 2	Sample 3	Sample 4			
	Date 12-Feb	Date 18-Feb	Date 24-Feb	Date 2-Mar			
Compound	AD4	AD5	AD6	AD7			
Chloroethene	<0.02	<0.20	<0.02	<0.02			
1,1-Dichloroethene	<0.02	<0.20	<0.02	<0.02			
trans-1,2-Dichloroethene	<0.02	<0.20	<0.02	<0.02			
cis-1,2-Dichloroethene	<0.02	<0.20	<0.02	0.021			
Trichloroethene	<0.02	<0.20	<0.02	<0.02			
Tetrachloroethene	<0.02	<0.20	<0.02	1.35			
Benzene	<0.02	<0.02	<0.02	0.460			
Toluene	<0.02	<0.02	<0.02	1.41			
Ethylbenzene	<0.02	<0.02	<0.02	0.14			
o-Xylene	<0.02	0.0248	<0.02	0.045			
m/p-Xylene	<0.02	<0.02	<0.02	0.084			
MTBE	111	9.79	2.86	3.55			

Well number B18		Concentration µg/L						
Samples Compound	Start	ID 1008-0811 AE1	ID 1008-0818 AE2	ID 1008-0815 AE3				
Chloroethene		< 0.79	<0.7	<0.72				
1,1-Dichloroethene		< 0.79	<0.7	<0.72				
trans-1,2-Dichloroethene		< 0.79	<0.7	<0.72				
cis-1,2-Dichloroethene		< 0.79	<0.7	<0.72]			
Trichloroethene		< 0.79	<0.7	<0.72				
Tetrachloroethene		< 0.79	<0.7	<0.72]			
Benzene		< 0.79	<0.7	<0.72				
Toluene		< 0.79	<0.7	<0.72				
Ethylbenzene		< 0.79	<0.7	<0.72				
o-Xylene		< 0.79	<0.7	<0.72				
m/p-Xylene		< 0.79	<0.7	<0.72				
MTBE		< 0.79	<0.7	<0.72		AE General	chemistry	
L passed (measured)		0.29	0.31	0.34	Parameter	Value	Parameter	Value
L passed (tracer salt)		0.254	0.286	0.279	рН	7.3±0.02	DOC	2.7 mg C/L
Date set up	12-Feb				Conductivity	73±0.5 mS/m	Iron	1.8 mg/L
Date sampled		18-Feb	24-Feb	2-Mar	Oxygen	0.09±0.01 mg/L	Ammonium	0.83 mg/L
Depth water table set up, mbs	9.18				Nitrate	<0.50 mg/L	Sodium	17 mg/L
Depth water table sampling, mbs		9.19	9.21	9.13	Fluoride	0.31 mg/L	Potassium	1.6 mg/L
Depth top sampler, mbs	12				Chloride	37 mg/L	Calcium	120 mg/L
Depth bottom well, mbs	15.10				Bicarbonate	300 mg/L	Magnesium	7.2 mg/L
Quality of water in reservoir		Clear	Clear	Clear	Sulphate	91 mg/L		

AE Precision field, samples, and groundwater chemistry.

Well number B18	Concentration µg/L								
	Sample 1	Sample 2	Sample 3	Sample 4					
	Date 12-Feb	Date 18-Feb	Date 24-Feb	Date 2-Mar					
Compound	AE4	AE5	AE6	AE7					
Chloroethene	<0.02	<0.20	<0.02	<0.02					
1,1-Dichloroethene	<0.02	<0.20	<0.02	<0.02					
trans-1,2-Dichloroethene	<0.02	<0.20	<0.02	<0.02					
cis-1,2-Dichloroethene	<0.02	<0.20	<0.02	<0.02					
Trichloroethene	<0.02	<0.20	<0.02	<0.02					
Tetrachloroethene	<0.02	<0.20	<0.02	<0.02					
Benzene	<0.02	<0.02	<0.02	<0.02					
Toluene	<0.02	<0.02	<0.02	<0.02					
Ethylbenzene	<0.02	<0.02	<0.02	<0.02					
o-Xylene	<0.02	<0.02	<0.02	<0.02					
m/p-Xylene	< 0.02	<0.02	<0.02	< 0.02					
MTBE	<0.1	<0.1	<0.1	<0.1					

AE Precision field, reference samples.

AF Field blind.				
Compound	Farum blind 1	Farum blind 2	Søborg blind 1	Søborg blind 2
	µg/L	µg/L	µg/L	µg/L
Chloroethene	<0.02	-	<0.02	-
1,1-Dichloroethene	<0.02	-	<0.02	-
trans-1,2-Dichloroethene	<0.02	-	<0.02	-
cis-1,2-Dichloroethene	<0.02	-	<0.02	-
Trichloroethene	<0.02	-	<0.02	-
Tetrachloroethene	<0.02	-	<0.02	-
Benzene	<0.02	-	<0.02	-
Toluene	<0.02	-	0.0435	-
Ethylbenzene	<0.02	-	<0.02	-
o-Xylene	<0.02	-	<0.02	-
m/p-Xylene	<0.02	-	<0.02	-
MTBE	<0.1	-	<0.1	-

Farum blind 2 and Søborg blind 2 have not been analyzed since there was not detected any content in Farum and Søborg blind 1.

102

Compound	Concentration µg/L		Dates	Temperatures	
	ID 1008-0194	ID 1008-0195	ID 1008-0196		
	BA1	BA2	BA3		
1,1-Dichloroethene	714	755	840	Set up	Set up
trans-1,2-Dichloroethene	631	697	812	Jan. 16, 2009	20.8°C
cis-1,2-Dichloroethene	634	690	748	Sampled	Sampled
Trichloroethene	631	681	744	Jan. 22, 2009	22.3°C
Tetrachloroethene	663	697	734	Pressure head	External
Benzene	733	768	796	at set-up	pressure
Toluene	711	737	737	55 cm	0 bar
Ethylbenzene	1,030	1,056	1,044	-	-
o-Xylene	770	812	810	Conductivity	-
m/p-Xylene	775	814	818	at set-up	-
MTBE	889	941	971	34.2 mS/m	-
mL sampled (measured)	242	346	437	-	-
mL sampled (by tracer salt)	243	308	393	-	-

BB Reference robustness lab dispenser, reference samples.

Compound	Concentration µg/L			
	Sample 1	Sample 2	Sample 3	
	Date: Jan. 16, 2009	Date: Jan. 19, 2009	Date: Jan. 22, 2009	
	BB1	BB2	BB3	
1,1-Dichloroethene	1,100	1,020	984	
trans-1,2-Dichloroethene	1,230	1,170	1,060	
cis-1,2-Dichloroethene	876	838	840	
Trichloroethene	1,120	1,070	1,000	
Tetrachloroethene	1,090	1,050	874	
Benzene	1,000	958	943	
Toluene	890	878	978	
Ethylbenzene	1,400	1,360	1,440	
o-Xylene	908	888	963	
m/p-Xylene	988	949	987	
МТВЕ	802	791	855	

CA Sampling depth robustness standpipe, samples.	
--	--

Compound	Concentration µg/L		Dates	Temperatures	
	ID 1008-0820 CA1	ID 1008-0822 CA2	ID 1008-0825 CA3		
1,1-Dichloroethene	855	839	872	Set up	Set up
trans-1,2-Dichloroethene	858	839	867	Apr 7, 2009	12.9°C
cis-1,2-Dichloroethene	876	847	942	Sampled	Sampled
Trichloroethene	965	929	1,020	Apr. 13, 2009	21.2°C
Tetrachloroethene	727	687	760	Pressure head	External
Benzene	1,016	990	1,079	at set-up	pressure
Toluene	900	826	961	50 cm	0.45 ± 0.05 bar
Ethylbenzene	1,163	1,179	1,236	-	-
o-Xylene	811	762	872	Conductivity	-
m/p-Xylene	828	754	886	at set-up	-
MTBE	1,013	973	1,088	70.5 mS/m	-
mL sampled (measured)	590	297	507	-	-
mL sampled (by tracer salt)	347	252	374	-	-

CB Sampling depth robustness standpipe, reference samples.

Compound	Concentration µg/L					
	Sample 1	Sample 2	Sample 3			
	Date: April 7, 2009	Date: April 10, 2009	Date: April 13, 2009			
	CB1	CB2	CB3			
1,1-Dichloroethene	1,590	1,130	1,020			
trans-1,2-Dichloroethene	1,610	1,130	1,070			
cis-1,2-Dichloroethene	1,270	886	851			
Trichloroethene	1,490	1,110	1,040			
Tetrachloroethene	1,130	749	798			
Benzene	1,570	1,060	993			
Toluene	1,440	1,020	960			
Ethylbenzene	1,980	1,210	1,160			
o-Xylene	1,320	907	894			
m/p-Xylene	1,320	1,140	1,110			
МТВЕ	1,600	1,040	941			
	DA	Ionic strength	robustness	lab dispenser.	, 10 mS/cm,	sample
--	----	----------------	------------	----------------	-------------	--------
--	----	----------------	------------	----------------	-------------	--------

Compound	Concentration µg/L			Dates	Temperatures
	ID 1008-0197	ID 1008-0198	ID 1008-0199		
	DA1	DA2	DA3		
1,1-Dichloroethene	641	643	646	Set up	Set up
trans-1,2-Dichloroethene	607	593	605	Jan. 23, 2009	21.0°C
cis-1,2-Dichloroethene	581	542	566	Sampled	Sampled
Trichloroethene	551	533	512	Jan. 29, 2009	21.7°C
Tetrachloroethene	606	586	558	Pressure head	External
Benzene	605	590	578	at set-up	pressure
Toluene	603	597	577	55 cm	0 bar
Ethylbenzene	817	817	786	-	-
o-Xylene	616	613	599	Conductivity	-
m/p-Xylene	659	660	638	at set-up	-
MTBE	722	705	645	10.1 mS/m	-
mL sampled (measured)	340	288	323	-	-
mL sampled (by tracer salt)	335	295	330	-	-

DB lonic strength robustness lab dispenser, 10 mS/cm, reference samples.

Compound	Concentration µg/L				
	Sample 1	Sample 2	Sample 3		
	Date: Jan. 23, 2009	Date: Jan. 26, 2009	Date: Jan. 29, 2009		
	DB1	DB2	DB3		
1,1-Dichloroethene	1,040	936	944		
trans-1,2-Dichloroethene	1,080	1,010	1,010		
cis-1,2-Dichloroethene	803	802	831		
Trichloroethene	1,020	1,000	1,010		
Tetrachloroethene	927	867	868		
Benzene	934	938	946		
Toluene	971	966	984		
Ethylbenzene	1,450	1,440	1,470		
o-Xylene	948	966	984		
m/p-Xylene	1,010	1,010	1,030		
МТВЕ	854	924	935		

Compound	Concentration µg/L		Dates	Temperatures	
	ID 1008-0200	ID 1008-0201	ID 1008-0202		
	EA1	EA2	EA3		
1,1-Dichloroethene	663	739	611	Set up	Set up
trans-1,2-Dichloroethene	844	952	744	Jan. 30, 2009	21.7°C
cis-1,2-Dichloroethene	780	875	669	Sampled	Sampled
Trichloroethene	650	820	546	Feb. 5, 2009	21.6°C
Tetrachloroethene	605	862	519	Pressure head	External
Benzene	741	838	618	at set-up	pressure
Toluene	736	930	540	55 cm	0 bar
Ethylbenzene	925	1,379	692	-	-
o-Xylene	638	936	524	Conductivity	-
m/p-Xylene	653	977	558	at set-up	-
MTBE	1,032	1,178	831	98.0 mS/m	-
mL sampled (measured)	604	551	448	-	-
mL sampled (by tracer salt)	over range	over range	over range	-	-

EA Ionic strength robustness lab dispenser, 100 mS/cm, samples.

EB Ionic strength robustness lab dispenser, 100 mS/cm, reference samples.

Compound	Concentration µg/L				
	Sample 1	Sample 2	Sample 3		
	Date: Jan. 30, 2009	Date: Feb. 2, 2009	Date: Feb. 5, 2009		
	EB1	EB2	EB3		
1,1-Dichloroethene	1,100	1,100	944		
trans-1,2-Dichloroethene	1,140	1,160	1,070		
cis-1,2-Dichloroethene	841	859	821		
Trichloroethene	1,030	1,080	1,000		
Tetrachloroethene	1,000	1,010	875		
Benzene	976	997	958		
Toluene	974	999	980		
Ethylbenzene	1,530	1,560	1,540		
o-Xylene	988	1,010	1,010		
m/p-Xylene	1,050	1,070	1,040		
МТВЕ	939	929	887		

FA Sampling time robustn	ess lab dispenser, 3 days, samples.	

Compound	Concentration µg/L			Dates	Temperatures
	ID 1008-0203	ID 1008-0204	ID 1008-0205		
	FA1	FA2	FA3		
1,1-Dichloroethene	673	685	655	Set up	Set up
trans-1,2-Dichloroethene	750	761	732	Feb. 6, 2009	22.1°C
cis-1,2-Dichloroethene	680	688	656	Sampled	Sampled
Trichloroethene	564	569	544	Feb. 9, 2009	21.8°C
Tetrachloroethene	649	665	626	Pressure head	External
Benzene	676	686	667	at set-up	pressure
Toluene	689	690	686	55 cm	0 bar
Ethylbenzene	943	942	942	-	-
o-Xylene	699	709	711	Conductivity	-
m/p-Xylene	740	751	749	at set-up	-
MTBE	767	800	823	36.3 mS/m	-
mL sampled (measured)	259	314	254	-	-
mL sampled (by tracer salt)	264	332	274	-	-

FB Ionic strength robustness lab dispenser, 3 days, reference samples.

Compound	Concentration µg/L				
	Sample 1	Sample 2	Sample 3		
	Date: Feb. 6, 2009	Date: Feb. 7, 2009	Date: Feb. 8, 2009		
	FB1	FB2	FB3		
1,1-Dichloroethene	1,070	1,180	1,190		
trans-1,2-Dichloroethene	1,160	1,240	1,210		
cis-1,2-Dichloroethene	882	897	899		
Trichloroethene	1,080	1,110	1,090		
Tetrachloroethene	929	1,050	1,080		
Benzene	1,020	1,090	1,090		
Toluene	1,040	1,060	1,060		
Ethylbenzene	1,610	1,620	1,630		
o-Xylene	1,050	1,070	1,060		
m/p-Xylene	1,110	1,130	1,120		
МТВЕ	941	1,060	1,050		

	GA Sampling	time robustness I	lab dispenser	. 9 days	. samples
--	-------------	-------------------	---------------	----------	-----------

Compound	Concentration µg/L		Dates	Temperatures	
	ID 1008-0206 GA1	ID 1008-0207 GA2	ID 1008-0208 GA3		
1,1-Dichloroethene	585	631	691	Set up	Set up
trans-1,2-Dichloroethene	590	770	865	Feb. 10, 2009	21.4°C
cis-1,2-Dichloroethene	561	605	793	Sampled	Sampled
Trichloroethene	499	542	815	Feb. 19, 2009	21.6°C
Tetrachloroethene	551	584	752	Pressure head	External
Benzene	604	747	826	at set-up	pressure
Toluene	579	756	838	55 cm	0 bar
Ethylbenzene	1,006	1,149	1,264	-	-
o-Xylene	590	803	895	Conductivity	-
m/p-Xylene	632	825	914	at set-up	-
MTBE	830	964	1,094	34.4 mS/m	-
mL sampled (measured)	373	459	618	-	-
mL sampled (by tracer salt)	405	451	over range	-	-

GB lonic strength robustness lab dispenser, 9 days, reference samples.

Compound	Concentration µg/L				
	Sample 1	Sample 2	Sample 3		
	Date: Feb. 10, 2009	Date: Feb. 14, 2009	Date: Feb. 19, 2009		
	GB1	GB2	GB3		
1,1-Dichloroethene	1,260	1,110	904		
trans-1,2-Dichloroethene	1,280	1,200	1,040		
cis-1,2-Dichloroethene	924	867	821		
Trichloroethene	1,140	1,070	1,010		
Tetrachloroethene	1,140	1,010	903		
Benzene	1,090	1,030	933		
Toluene	1,090	1,010	1,000		
Ethylbenzene	1,700	1,550	1,520		
o-Xylene	1,100	1,020	999		
m/p-Xylene	1,170	1,060	1,060		
МТВЕ	1,080	960	887		

Compound	Concentration µg/L		Date & time	Temperatures	
	ID 1008-0869	ID 1008-0870	ID 1008-0871		
	HA1	HA2	HA3		
1,1-Dichloroethene	669	389	686	Start 20%	Set up
trans-1,2-Dichloroethene	740	466	853	Mar. 16, 2009 at 15:45	21.0°C
cis-1,2-Dichloroethene	675	409	790	Step to 50%	Sampled
Trichloroethene	673	417	771	Mar. 18 at 16:30	21.3°C
Tetrachloroethene	485	374	739	Step to 80%	Pressure head
Benzene	774	477	900	Mar. 20 at 16:00	at set-up
Toluene	751	418	855	Sampled	55 cm
Ethylbenzene	1,084	573	1,206	Mar. 22 at 15:45	-
o-Xylene	767	426	868		External
m/p-Xylene	826	450	924	Conductivity	pressure
MTBE	851	478	959	at set-up	0 bar
mL sampled (measured)	562	414	520	34.2 mS/m	-
mL sampled (by tracer salt)	over range	461	over range		-

HA Concentration integration robustness, lab dispenser, samples.

HB Concentration integration robustness, lab dispenser, reference samples.

Compound		Concentration µg/L	
	Sample 1	Sample 2	Sample 3
	Date: Mar. 17, 2009	Date: Mar. 19, 2009	Date: Mar. 21, 2009
	HB1	HB2	HB3
1,1-Dichloroethene	355	968	1,500
trans-1,2-Dichloroethene	369	974	1,550
cis-1,2-Dichloroethene	300	826	1,240
Trichloroethene	361	996	1,520
Tetrachloroethene	324	853	1,430
Benzene	343	902	1,300
Toluene	327	912	1,440
Ethylbenzene	487	1,350	2,200
o-Xylene	342	897	1,370
m/p-Xylene	390	1,050	1,670
MTBE	334	870	1,260

APPENDIX 6

Data management

In general, the data filing and archiving procedures of the DHI Quality Management System were followed.

All data recording and reporting was done in English, communication with Danish external and internal was partly in Danish.

Data storage, transfer and control

The data was compiled and stored as summarized in Table 36.

Analytical raw data was filed and archived according to the specifications of the laboratories quality management systems under their ISO 17025 accreditation and were thus not the concern of DHI staff.

Data type	Data media	Data recorder	Data recording timing	Data storage
Test plan and re- port	Protected PDF files	Test responsible, DHI	When approved	Files and archives at DHI
Test details in laboratory and field	Log book and pre- prepared forms	Technician, DHI	During collection	Files and archives at DHI
Calculations	Excel files	Test responsible, DHI	During calculations	Files and archives DHI
Analytical reports	Paper	Test responsible, DHI	When received	Files and archives DHI

Table 36Data compilation and storage summary.

Implementation

All <u>e-mail communication</u> was filed in the Outlook Exchange folders, see below structure.

The DHI person receiving an e-mail (to field, not cc field) filed the e-mail. The DHI person sending an e-mail used the "send and file" option and thereby ensured prompt filing of all e-mails sent. There was generally no need to widespread cc when sending e-mails, unless specific action or communication is required.

All <u>paper communication</u> was immediately filed in the binder established by GHE and available at his office. The title page of the binder resembled the folder structure at dkstor, see below.

All <u>recordings</u> during testing in the laboratory or in the field were done in water proof writing in hardback log-books with all pages numbered page/total page number. The log books were filed with the staff member using them until the testing was completed, then with GHE and available at his office.

All <u>data</u> needed for the tests were recorded in the data sheets available from Appendix 5 of the Test Plan. The format was Word tables, Excel worksheets or paper sheets as decided by GHE as test responsible. The outline and format were mandatory and could only be deviated from by recording a deviation with justification.

All <u>calculations</u> were done using Excel spreadsheets with names identifying the contents and with headings and notes explaining the calculations. All <u>electronic files</u> are stored at dkstor in the folder structure shown below. File names were constructed to identify the contents. Subfolders were established as found convenient, while again constructing folder names that identify the contents. When working away from network connection (offline), copies of files were used on own PC, but the server version was updated immediately after returning to network connection.

APPENDIX 7

Deviations and amendments

Deviation report

Sorbisense GWS40 passive sampler test plan

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assess- ment	Correc- tive action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
4	Pre-testing	Sample labeling and sending	Samples E1 to B3 (should be 3x3 P&T vials) were sent as A1 to A3, B1 to B2 and E1 to E3 (9x1 P&T vials). Samples A and B were sent as "10 g/L" and "0.09 g/L" as single samples instead of triplicates	Error/misund erstanding while labeling. Pre- testing was done before appendix 3.10 §1 was formulated.	Samples E1 to E3 lack data for BTEX. Sample A2 and A3, B2 and B3 are lacking (single instead of triplicate samples). No significant impact on overall verification	3 more vials of unopened stock solution were sent for analysis as A4 to A6	1/12 2008	(GIHE)	9/2 07	3	7-21-09	BW 7-21-09

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assess- ment	Correc- tive action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
2	BA, DA	3.2 §1c	Used 10 mL syringe instead of 100 ml syringe	Delivery of 100 mL syringe is delayed by several weeks	No significant impact.		16/1 and 23/1 2009	JA-	91, 09	9	7-21-09	BW 7-21-09
3	All lab tests	3.10 §3	Samplers are stored at room temperature	Instruction printed on the sampler package states 5- 26 °C.	No impact.	Hand- written change in all test plan copies	from 22/1 2009	H	9409	9	7.21-09	3000 7-21-09
4	All tests with lab dispenser	3.2 §\$c&d	Samplers are removed before draining the dispenser (swop steps c and d)	To avoid air being sucked backwards through the sampler, and to avoid liquid with lower concentration entering the sampler	No impact	Hand- written change in all test plan copies	from 22/1 2009	A	9/1 07	9	7.21-09	3hv 7-21-09

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Correc- tive action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
5	GA, J	3.10 §4	Cap vials with stock solution or stock dilution packed in bubble plastic and PE bottles instead of a P&T vial	To minimize the risk of damage during transport	No impact	No action	10/2 2009	YA (GHE)	19/2	3	2/13/04	(25W)
6	J	3.3 §1 b	Stainless steel nut and 2 ferrules dropped into standpipe	Were too loosely attached to the lid before mounting the hoses.	No impact	Used new nut and ferrules, Did not retrieve the ones dropped into the standpipe	10/2 2009	JA	142	7	2/13/09	"Zhw
7	J	After 3.3 §2 f	Rinsed syringe and spiking port with methanol	This step has been omitted from the standpipe test plan.	Improved addition of the spike	Done as in app. 3.2 §2 g&h. Added 2 steps to app. 3.3, amend- ment.	10/2 2009, from 10/2 2009	HA	12/107	9	2/13/04	3hu

deviction.

Changed in printed versions.

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Correc- tive action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
8	J	After 3.3 §2 g	100 mL syringe broke while passing rinse water trough the spiking port	Back- pressure from the standpipe and vibration from the pump	Only ca. 60 mL of water added. Some mL of water drained through port before it was closed. No significant impact.	None. From now on, the 10 mL gas- tight syr- inge will be used	10/2 2009, from 10/2 2009	YH-	12/2	9	2/13/99	3h

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
9	AA4-AE4	3.10	No pictures were taken	Did not realize pictures had to be taken for field samples	If trouble with identifying the samples should occur at the lab we do not have pictures as evidence	Take pictures at next field sampling	12/2-01	MTA	1/505	3	7-21-09	Zhv
10	AC4 and AD4	3.4	Sampler not placed in specified depth. Well B17 sampler is placed 11 mbs instead of 12 mbs Well C14 sampler is placed 11.3 mbs instead of 11.5 mbs	Not physically possible to place at specified depth	B17 reference sample is taken 1 m from sample. Can be a different water type C14 no impact.	Have in mind when evaluating results. Next sampling campaign depth of reference samples are changed accordingly	12/2 2009	MTA	45 gr	\mathcal{S}	7-21-09	Zh
11	AE4	3.4	The exact program was not	Well B18 was the first well	Can have a minor effect on the	Have in mind when evaluating	12/2	MTA	1/501	S	7.21-09	Ben

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
			followed in details and the pumping time was long.	reference- sampled. The equipment and the sampling method were studied.	reference samples	results.						
12	AD4-AD7 all 4 Samp- ling days	3.4	Well B17 Reference sample was not taken at stable pH and conductivity	There must be different water types at the depth of the pump	It is not possible to get stables values from the near surroundings of the well.	Have in mind when evaluating results.	12/2- 2009 18/2 24/2 18/2	MTA	509		7-21-09	BW
13	AA4-AE4	3.4	Reference sampling. Filling bottles from the bottom and overflowing twice was not fully done.	Pump flow was very low and stopped some times. Quick sampling was needed. Having tube in bottom of	Can affect parameters where aeration is unwanted	Have in mind when evaluating results. Focus on next reference sampling will be to improve this.	12/2 2009	MTA	the of		7-2(-0°	BW

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
14	All standpipe tests	3.3 §1b	Wrong wording	Not corrected earlier	none	Changed air exchan- ge pipes to air hoses in all test plan copies	17/2	YA	59	S	7-2(-09	30w
15	ſ	3.3 §5f	1 reservoir found completely filled with water, inclu- ding the air hose	Leakage, cause unidentified	1008-214: Tracer salt shows no washout. Number of replicate samplers in test J is down to 6.	The reservoir will not be used in further tests.	16/2	YA	4505	\bigcirc	7-21-09	37 W
16	L	3.3 §5g	4 samplers were remo- ved without identifying the reser- voirs for volume measure- ment	By Mis- take: follo- wed the test plan (sampling), but did not check for next step (measure volume)	Maybe not possible to identify sample volume in reservoirs for sample 210, 211 and 213. No major impact.	Measured volumes in the unidentified reservoirs anyway, for comparison with tracer salt results.	16/2	YLA	45 of	S	7-21-09	Bhi

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field responsible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
17	N	3.3 §11	2 Glass heads for wash bottle cracked while handling, also the spare head	By accident. Fragile material.	Minor VOC loss from wash bottle. An effect on concentration in standpipe is unlikely. Such effect would show in reference samples O 1- 3.	Sealed the fittings with parafilm. Ordered more heads.	17/2	YH-	15 %	3	7-21-09	31W

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
18	AA7-AC7 Well C8, C11, C14	3.10	Pictures was not taken of these samples	DHI person was not on location when ref. samples were taken	No impact, since the samples are registered correctly at Eurofins		2/3	MTA	15 8	S	7-21-09	3W
19	AA4-AE7 Field reference sampling	Appendix 3.4	The sampled water was headed by the pump and online temperature measureme nts are therefore not reflecting the temperature in the well	The low flow during sampling caused that the pump was heating the pumped water (higher flow will cool down the pump).	Online parameters have to be stable before sampling. This was not impacted. There is a risk that volatile compound are lost during sampling	Samples were carefully taken. Have to be in mind when evaluating results.	12/2 18/2 24/2 2/3	MTA	75R	$\sum_{i=1}^{n}$	7-21-09	Zm
20	P (1 st attempt)	3.3	Noticed that wash bottle had was turned the	By mistake. Direction was not	Lost ca. 2 L of liquid.	Test was suspended when it turned out	27/2	H	15 05	7	7-21-09	51W

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
			wrong way.	stated explicitly in test plan		that samplers with wrong hydraulic resistance were used.						
21	P (2 nd attempt)	3.3	30-60 minutes after spiking, a leakage occurred at the spiking port	Probably loosened due to vibration from the pump	Lost ca. 3 Liters. Uncertainty whether high concentration liquid was lost so shortly after spiking	Test was aborted . Tighteed all fittings on the standpipe before proceeding	6/3	JA-	1/504	5	7-21-09	EW
22	P (3 rd attempt)	3.3	Observation that surface of reservoirs appears to be slimy at end of test.	Growth of a biofilm?	Risk for aerobic biodegradatio n of VOCs.	Check of VOC loss vs. K _{ow} does not indicate biodegradati on, rather adsorption. Disinfection of standpipe and reservoirs with ca. 25 mg/l of free	16/3 obse rvatio n 25/3 chlori natio n.	YA	45 o	5	7-21-0	3715

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
						chlorine by addition of sodium hypochlorite for 5 hours. Rinsed the standpipe and reservoirs with water.						
						From now on, the standpipe is filled with water passed trough a sterile filter (Sartobran P sterile cansule						
						Sartorius, 0.45 μm + 0.2 μm)					- And A Collector Collector Collector	

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
23	R	3.3 § 1	Filled the standpipe to ca. % with water before inserting the reservoirs	Setting up the test alone. The water level gives buoyancy.	No impact on results	none	From 26/3 on	YA-	1/501	$\left\{ \right.$	7-21-09	30761
24	R	3.3 § 2	Taken only 2 vials of leftover stock solution. None send to analysis	Limited volume left from test R startup. Decided to cut down on reference analysis in accordanc e with test plan chapter 3.2.5	none	none	26/3	YH	4505	9	7-21-08	387W
25	R	3.10 §2	Sample S1 was sent after 4 days of storage instead of max 3.	to minimize the sending of single samples to Eurofins.	None, the samples contain relatively high concentration	none	30/3	\$A-	4502	\leq	7.21-04	37 W

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
~~					of 1 mg/L					andra a fair a taga an da an tar 10 bata (10 Saga partiti		adamatan dari kuran dara tana yang yang yang yang yang yang yang y
25	VACA	3.3	CA (1 mg/L, with pressure) instead of V (2 mg/L) that was due according to test schedule	only 2 samplers on stock with the correct hydraulic resistance	No Impact	none	114	YA	YJA	$\left \right\rangle$	7-21-07	59 W
27	CA	3.3 §2	No stock solution taken for reference analysis nA1 to nA3	The 10 mL syringe broke, and the remaining stock solution was spilled	No analysis of stock used in test CA possible.	Sent stock solution vial kA1, taken 26/3 for analysis to check reference lab performance.	714	JA-	150	5	7-21-07	3 W
28	CA	3.3 §3	Sample CB1 taken after 2 hours instead of 4	Latest possible sample pick-up time before Easter	The standpipe is not completely mixed after 2 hours, as we have seen in the 2-hour- samples	None.	7/4	YA-	15d		7-21-07	87W

Devi- ation num- ber	Experiment label Test Plan Table 1	Test method step Test Plan Appendix 3	Deviation	Cause	Impact assessment	Corrective action, if any	Date	Signature test or field respon- sible	Date	Signa- ture verify- cation respon- sible	Date	Signa- ture Battelle AMS QM
					taken before test P.							
29	CA	3.10 §2	Sample CB2 was sent after 4 days of storage instead of max 3.	Easter holidays 9-13/4	None, the samples contain a high concentration of 1 mg/L	none	14/4	YH	1/505	\leq	7-21-09	87 W
30	V	3.3 §2	Used 5-mL gas tight syringe instead of 10 mL	10 mL syringe broken	none	none	17/4	Y4	Yra	$\left \right\rangle$	721-09	37W
31	V	3.3§2	No stock solution taken for reference analysis	Only small amount of stock solution left in the 10 mL cap vials	Taking the remainder would result in a high risk for VOC loss to the headspace.	Sent an unopened 1,5 mL stock solution vial as mA1 to check reference lab performance.	17/4	W	Mr or	\sum	7.21-09	32W

TESTING DOCUMENT TITLE AND DATE: Sorbisense GWS40 Passive Sampler

AMENDMENT NUMBER: 1

DATE OF REVISED PART: 09-02-2009

PARTS TO BE CHANGED/REVISED: Section 3.1.1 and 3.2.1 part on field sampling, appendix 3.4. Tables in Appendix 5, will be adapted to the new situations when they are to be used during the field testing.

CHANGE/REVISION:

Reference to revised parts. The essentials of the change is that a low purge reference sampling strategy with a dedicated sampling pump is chosen instead of reference sampling with permanent, continuously pumped.

REASON FOR CHANGE: It proved impossible to use the wells originally chosen because of access restrictions caused by the installation dimensions. The new wells are monitoring wells at the same sites.

ORIGINATED BY:

Mette Tjener Andersson

DHI WMC Test Responsible for Field

Mette Anderon

DATE 10,2,2009

APPROVED BY:

DHI WMC Internal Auditor

DHI WMC Verification Responsible

10/2.09

DATE

celle AMS Center Quality Manager

2/13/09

DATE

DATE

7 We 3

igitally signed by Army Dindai shattelle.org Date: 2009.03.02 09:35:57 -05'00'

Battelle AMS Center Manager

DATE

TESTING DOCUMENT TITLE AND DATE: Sorbisense GWS40 Passive Sampler

AMENDMENT NUMBER: 2

DATE OF REVISED PART: 16-02-2009

PARTS TO BE CHANGED/REVISED: Appendix 3.10 §3 and §5

CHANGE/REVISION:

Appendix 3.10 §3: Samplers are equipped with protective caps in both ends, placed in transportation tubes and stored cold 1-5°C and dark for no more than 3 days prior to transfer to the laboratory.

Appendix 3.10 §5: Samplers are packed in the transport tubes in a cardboard box with a cooling element. Samplers are shipped with a courier service, with max 48 hr transport time.

REASON FOR CHANGE: All handling and shipping of Sorbisense samplers has so far been done at ambient temperature. However, Sorbisense wishes to implement cooled storage and shipping for the remaining of ETV test, to rule out losses due to high storage temperature as a source of error.

ORIGINATED BY:

Gerald Heinicke

DHI WMC Test Responsible

DATE

APPROVED BY:

DHI WMC Internal Auditor

18.2,2003

DHI WMC Verification Responsible

DATE

DATE

Digitally signed by Amy Dindal DN: cn=Amy Dindal, o=Battelle, ou, ervail=dindala@battelle.org.

Date: 2009.02 19 14 24:06 -05'00

Battelle AMS Center Quality Manager

2-19-09

Battelle AMS Center Manager

TESTING DOCUMENT TITLE AND DATE: Sorbisense GWS40 Passive Sampler

AMENDMENT NUMBER: 3

DATE OF REVISED PART: February 24, 2009

PART TO BE CHANGED/REVISED: Appendix 3.3 §3

CHANGE/REVISION:

The first reference sample from the standpipe is taken after 4 hours, instead of 2. This applies from test P.

REASON FOR CHANGE:

Tests J and N show incomplete mixing in the standpipe after 2 hours, with concentrations about double of what was expected. The change will make it possible to also use the first reference samples in the calculations.

ORIGINATED BY:

Gerald Heinicke

DHI WMC Test Responsible

0-0

DATE

APPROVED BY:

illi

DHI WMC Internal Auditor Responsible

27/2-09

DATE

Battelle AMS Center Quality Manager

3.4.09

DATE

DHI WMC Verification

21

DATE

Battelle AMS Center Manager

TESTING DOCUMENT TITLE AND DATE: Sorbisense GWS40 Passive Sampler

AMENDMENT NUMBER: 4

DATE OF REVISED PART: February 26, 2009

PART TO BE CHANGED/REVISED: appendix 3.2., and spike volumes in appendix 3.9

CHANGE/REVISION:

Test HA (concentration integration) will be done as one exposure, i.e. without emptying the lab dispenser when the concentration is increased. Instead, additional spikes are added to the dispenser: 2.5 mL of stock solution after 2 days, 2 mL after 4 days. Before adding the additional spike, the samplers are removed from the capillaries and capped. The capillaries are placed above the water level. 30 minutes after the additional spike has been added, the capillaries are placed in the original height and the samplers attached again. In test HA, reference samples will be taken in the middle of each concentration exposure time, i.e. after 1, 3, and 5 days.

REASON FOR CHANGE:

The above procedure was considered earlier. Now that concentrations in the lab dispenser have proven to remain stable, it is feasible to work this way.

ORIGINATED BY:

Gerald Heinicke

DHI WMC Test Responsible

DATE

APPROVED BY:

DHI WMC Internal Auditor Responsible

2-03

DATE

Battelle AMS Center Quality Manager

3.4.09

DATE

ab 26, 2009

DHI WMC

Verification

27/208

DATE

Battelle AMS Center Manager

DATE

VERIFICATION DOCUMENT TITLE AND DATE: Sorbisense GWS40 Passive Sampler, joint verification protocol.

AMENDMENT NUMBER: 5

DATE OF REVISED PART: September 24, 2009

PART TO BE CHANGED/REVISED: Table 7 Calculations used for the test results

CHANGE/REVISION:

Four additional statistical methods were used in the evaluation of the test results.

 Precision for datasets with up to three replicates was calculated as relative standard deviation with the method stated in the verification protocol (first row in table below). For datasets with more than three replicates, the relative standard deviation was calculated with the method shown in the second row of the table.

Precision (repeatability or reproducibilit y), as relative standard deviation, RSD	$D_{i} = \left x_{i\max} - x_{i\min} \right $ $\overline{x}_{i} = \frac{\sum x_{i}}{n}$ $d_{i} = \frac{D_{i}}{\overline{x}_{i}}$ $\overline{d} = \frac{\sum d_{i}}{m}$ $RSD = \frac{\overline{d} * 100}{1.693}\%$	D _i is the range at level i x_{imin} and x_{imax} are the lowest and highest measurements at level i d_i is the relative range at level i \overline{d} is the mean relative range for all m levels Used with three replicates, i=3 in x_i
Precision (repeatability or reproducibilit y), as relative standard deviation, RSD	$\overline{x}_{i} = \frac{\sum x_{i}}{n}$ $s_{i} = \frac{\sum (x_{i} - \overline{x_{i}})^{2}}{n - 1}$ $RSD = \frac{s_{i}}{\overline{x_{i}}}$	\overline{x}_i is the mean <i>n</i> is number of measurements s_i is standard deviation Used with more than three replicates, i>3 in x _i

2) For reporting the results of the field measurement, Ratio was used.

Ratio, Ra	$Ra_i = \frac{x_i}{\bar{y}_{i,j}} \times 100\%$	x_i is one sample measurement $\bar{y}_{i,j}$ is the mean of the reference sample measurement done before and after the sample measurement
		Used for field measurements

3) A test of significance of mean difference was applied to the results of the field measurements.

Test of significance of mean difference	$t_{0.975(f)} > \frac{\left \overline{d}\right }{s_d} \sqrt{n}$	A paired t-test was applied. $t_{0.975}(f)$ is Student's t-factor for two-sided test at 95% confidence level. <i>n</i> is number of measurements \overline{d} is the mean difference between the concentrations of the two
		methods.
		s _d standard deviation on the
		difference between methods

 For the comparison of two means, a t-test assuming unequal variances was used instead of the test assuming equal variances.

Test of mean against mean value	$\frac{\left \overline{x_{i}} - \overline{y_{i}}\right }{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} > t_{0.975}(v)$ $df = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1} - 1} + \frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}}$	This t-test assumes unequal variances and calculates the degrees of freedom from the datasets. s_i is the standard deviation of dataset i, with n_i replicates.
	$s_i = \frac{\sum (x_i - \overline{x_i})^2}{n - 1}$	

REASON FOR CHANGE:

The changes in the application of statistical methods are more appropriate for the results of the verification testing. Specifically:

- 1) The second method is more powerful than the first for datasets with a larger number of replicates.
- Robustness was reported as the ratio between the mean value obtained for the robustness variation and the mean value obtained under reference conditions, since it was not possible to reliably state a true concentration in the wells.
- For each compound, a paired t-test was applied to check the hypothesis that the difference between sampler results and reference sample results in the field was zero.
- The method assuming unequal variances is more appropriate because the variance varied between datasets.

ORIGINATED BY:

 \mathbb{I} e

DHI WMC Test Responsible

September 30, 2009

DATE

APPROVED BY:

DHI WMC Internal Auditor

abber 5th 2009

DATE

DHI WMC Verification Responsible

Ochly 1th 2009

DATE

Battelle AMS Center Quality Manager

Battelle AMS Center Manager

DATE

DATE

APPENDIX 8

Field report

Validering af passiv vandprøvetager fra Sorbisense

Vandprøvetagning med MP1 pumpe i Farum og Søborg

GEO projekt nr. 32294 Rapport 1, 2009-03-10

Sammenfatning

GEO er af DHI, Institute for Water, Environment and Health, blevet anmodet om at udtage vandprøver med MP1 pumpe fra i alt 5 miljøtekniske boringer i Farum og Søborg.

Vandprøvetagningen er udført i forbindelse med validering af en passiv vandprøvetager (SorbiCell) fra firmaet Sorbisense. Vandprøverne er udtaget ved lav pumpeydelse efter proceduren for mikroforpumpning. Metodebeskrivelse for prøvetagningen er vedlagt i anneks A.

Vandprøvetagningen er udført 4 gange med 6 dages mellemrum i perioden 12. februar til 2. marts 2009. Under prøvetagningen er der løbende registreret iltindhold, ledningsevne, pH og temperatur. Resultater fra feltmålingerne er vedlagt i anneks B.

De anvendte pumpeydelser under forpumpningen var på mellem 1,2 og 1,8 liter pr. minut, og de tilsvarende sænkninger i de 5 boringer var på mellem 3 og 15 cm med et gennemsnit på 8 cm. Prøvetagningsinstruksens krav om en maksimal sænkning under forpumpningen på ca. 0,1 m vurderes dermed generelt at være overholdt.

Under selve prøvetagningen blev pumpeydelsen i boringerne droslet ned til mellem 0,4 og 0,8 liter pr. minut, hvorved vandstanden i boringerne steg. Prøvetagningsinstruksens krav om at prøvetagningen skulle foretages under stigende vandstanden i boringerne vurderes dermed også at være opfyldt.

> GEO Maglebjergvej 1 2800 Kgs. Lyngby Tlf.: +45 4588 4444 Fax: +45 4588 1240 geo@geo.dk www.geo.dk CVR-nr: 59781812

Deres ref.: GEO projekt nr. 32294, Rapport 1, 2009-03-10 - Vandprøvetagning i Farum og Søborg for DHI

GEO

Udarbejdet for DHI Agern Allé 5 2970 Hørsholm Udarbejdet af Jørgen Maag Andersen, 4520 4219, jga@geo.dk

Kontrolleret af Steen K. Munch, 4520 4126, skm@geo.dk

Indhold

1	Indledning	. 3
2	Vandprøvetagningens udførelse	. 3
	2.1 Generelt	. 3
	2.2 Materialer og metoder	. 4
3	Konklusion	. 6

Anneks

- A Prøvetagningsinstruks for vandprøvetagningen
- B Skemaer med feltmålinger og -observationer under prøvetagningen

GEO

1 Indledning

GEO er af DHI, Institute for Water, Environment and Health, blevet anmodet om at udtage vandprøver med MP1 pumpe fra i alt 5 miljøtekniske boringer i Farum og Søborg. Vandprøvetagningen er udført 4 gange med 6 dages mellemrum.

Vandprøvetagningen er udført i forbindelse med validering af en passiv vandprøvetager (SorbiCell) fra firmaet Sorbisense. GEOs andel i valideringen består kun i at udtage vandprøverne med MP1 pumpe, og herunder måle og registrere feltparametrene iltindhold, ledningsevne, pH og temperatur. DHI står for levering af prøvetagningsemballage, kemiske analyser samt håndtering af Sorbicellerne.

Indeværende rapport omfatter en beskrivelse af proceduren for vandprøvetagningen, samt resultaterne fra feltmålingerne ved prøvetagningen.

2 Vandprøvetagningens udførelse

2.1 Generelt

Der er udtaget vandprøver fra de 2 boringer B17 og B18 på Statoil servicestationen på Farum Bytorv 76 i Farum, samt fra de 3 boringer C8, C11 og C14 ved Søborg Hovedgade 17-29 i Søborg. Data for boringerne, prøvetagningsdybder mv. fremgår af tabel 1, som er udarbejdet af DHI.

Lokalitet	Far	um	Søborg				
Boringsnavn	B17	B18	C8	C11	C14		
DGU nr.	193.2277	193.2278	201.5855	201.5851	201.5858		
Dybde grundvand (ro) m u.t.	9,32	9,24	8,86	8,9	9,48		
Dybde filtersætning m u.t.	8,2-15,2	8,3-15,3	11,5-15	7-13	6-13		
Prøvetagningsdybde m u.t.	11 (12*)	12	13	11	11,3 (11,5*)		
Afstand top af forerør til terræn (cm)	10	14	10	25	8,5		
Prøvetagningsdybde m u. top af forerør	11,9	11,86	12,9	10,75	11,42		
SorbiCell nr.	043-102	043-102	043-103	043-102	043-102		
Placering af SorbiCelle	Тор	Тор	Тор	Тор	Тор		
Afstand fra Sorbicelle til bund af boring (m)	3,2	3,3	2	2	1,5		
Vand over Sorbicelle (m)	2,7	2,8	4,1	2,1	2		

Tabel 1. Data for boringerne, prøvetagningsdybder mv. Skemaet er udarbejdet af DHI.

* Prøvetagningsdybde anvendt ved den første prøvetagningsrunde den 12/2.

Deres ref.:

GEO projekt nr. 32294, Rapport 1, 2009-03-10 - Vandprøvetagning i Farum og Søborg for DHI 3/6
GEO

Vandprøverne fra de 5 boringer blev udtaget 4 gange med 6 dages mellemrum. Prøverne blev udtaget den 12/2, 18/2, 24/2 og 2/3 2009.

2.2 Materialer og metoder

Generelt

Vandprøverne skulle udtages med MP1 pumpe ved lav pumpeydelse ("Mikroforpumpning"), som beskrevet i kapitel 7 i "Håndbog i prøvetagning af jord og grundvand" (Amternes Videncenter for Jordforurening (AVJ), Teknik og Administration, rapport nr. 3 2003).

De ved prøvetagningen anvendte materialer og metoder er nærmere beskrevet i prøvetagningsinstruksen, som er vedlagt i anneks A. Inden prøvetagningen blev denne prøvetagningsinstruks godkendt af DHI. Under hele prøvetagningsprojektet førte rekvirenten, Mette Tjener Andersson fra DHI, tilsyn med prøvetagningen.

Prøvetagningsdybder

De anvendte prøvetagningsdybder i boringerne fremgår af tabel 1. Ved den første prøvetagning var prøvetagningsdybden i boringerne B17 og C14 hhv. 12 og 11,5 m u.t. Men da det ikke var muligt at placere Sorbicellerne så dybt i disse 2 boringer blev vandprøverne ved de efterfølgende prøvetagninger udtaget hhv. 11 og 11,3 m u.t.

Pumpeydelse og sænkning

Ifølge prøvetagningsinstruksen skulle følgende 2 krav vedrørende pumpeydelsen og vandstanden så vidt muligt overholdes:

- Pumpeydelsen under forpumpningen skal være tilstrækkelig lav til at den maksimale sænkning i boringen generelt ikke overstiger 0,1 m.
- Pumpeydelsen under prøvetagningen skal neddrosles så vandstanden i boringen stiger under prøvetagningen.

Ved den første prøvetagningsrunde d. 12/2 blev det indledningsvis forsøgt at forpumpe med en ydelse på under ca. 0,5 l/min. Men hver gang pumperne blev droslet ned til en ydelse på under 0,5 l/min. slog pumperne fra efter kort tid. Det kunne herved konstateres, at MP1 pumperne ikke kunne køre stabilt ved en så lav ydelse.

Årsagen hertil vurderes at være dels, at MP1 pumpen ikke er specielt designet til at pumpe med en så lav ydelse, og dels at der var for stor flow-modstand ved de pågældende løftehøjder på mellem 11 og 13 m og i den anvendte målegris. For at reducere flow-modstanden under pumpningen blev målegrisen derfor udskiftet med en 0,5 liters red-cap prøveflaske, som herefter blev anvendt som målegris. Sonderne til måling af feltparametrene iltindhold, ledningsevne, pH og temperatur blev placeret i toppen af flasken, og vandet fra boringen blev udledt i bunden af flasken, og løb ud over flaskens

GEO

top. Denne ændring af prøvetagningsproceduren blev godkendt af Mette Tjener Andersson fra DHI.

De aktuelle pumpeydelser og pejleresultater under forpumpning og prøvetagning fremgår af feltskemaerne i anneks B. De tilsvarende beregnede sænkninger i boringerne fremgår af tabel 2.

Boring	Prøvedato	Sænkning ved forpumpning (cm)	Sænkning ved prøvetagning (cm)
B17 (Farum)	12-02-2009	8	3
	18-02-2009	10	2
	24-02-2009	11	2
	02-03-2009	12	4
B18 (Farum)	12-02-2009	11	3
	18-02-2009	12	1
	24-02-2009	13	2
	02-03-2009	15	4
C8 (Søborg)	12-02-2009	3	0
	18-02-2009	3	0
	24-02-2009	4	1
	02-03-2009	5	3
C11 (Søborg)	12-02-2009	-	-
	18-02-2009	5	2
	24-02-2009	5	2
	02-03-2009	4	2
C14 (Søborg)	12-02-2009	8	4
	18-02-2009	6	3
	24-02-2009	5	1
	02-03-2009	5	2

Tabel 2. Sænkning af vandstanden i boringerne under forpumpning og prøvetagning. Pejledata er vedlagt i anneks B.

Under forpumpningen af boringerne blev der generelt pumpet med ydelser på mellem 1,2 og 1,8 liter pr. minut. Ved disse ydelser var sænkningerne i boringerne i Farum på mellem 8 og 15 cm, med et gennemsnit på 11,5 cm, jf. tabel 2. Tilsvarende var sænkningerne i boringerne i Søborg på mellem 3 og 8 cm med et gennemsnit på 4,8 cm. Prøvetagningsinstruksens krav om en maksimal sænkning under forpumpningen på ca. 0,1 m vurderes dermed generelt at være overholdt.

GEO

Under selve prøvetagningen blev pumpeydelsen i boringerne droslet ned til mellem 0,4 og 0,8 liter pr. minut. Derved steg vandstanden i boringerne, så sænkningen under prøvetagningen kun var mellem på mellem 0 og 4 cm. Prøvetagningsinstruksens krav om, at prøverne skulle udtages under stigende vandstand, vurderes dermed også at være overholdt.

3 Konklusion

GEO har 4 gange i perioden 12. februar til 2. marts 2009 udtaget vandprøver med MP1 pumper fra 5 boringer i Farum og Søborg. Vandprøverne er udtaget ved lav pumpeydelse efter proceduren for mikroforpumpning.

De anvendte pumpeydelser under forpumpningen var på mellem 1,2 og 1,8 liter pr. minut, og de tilsvarende sænkninger i de 5 boringer var på mellem 3 og 15 cm med et gennemsnit på 8 cm. Prøvetagningsinstruksens krav om en maksimal sænkning under forpumpningen på ca. 0,1 m vurderes dermed generelt at være overholdt.

Under selve prøvetagningen blev pumpeydelsen i boringerne droslet ned til mellem 0,4 og 0,8 liter pr. minut, hvorved vandstanden i boringerne steg. Prøvetagningsinstruksens krav om at prøvetagningen skulle foretages under stigende vandstanden i boringerne vurderes dermed også at være opfyldt.

ANNEKS A

Prøvetagningsinstruks for vandprøvetagning

Projekt 32294 – Vandprøvetagning i Farum og Søborg for DHI

Sag 32294 Vandprøvetagning i Farum og Søborg for DHI

Prøvetagningsinstruks

Generelt:

- Der skal udtages 5 vandprøver ved "mikroforpumpning" med ved brug af MP1-pumper, teflonslanger og målegris.
- De 5 prøver skal udtages 4 gange med 6 dages mellemrum, dvs. der i alt skal udtages 20 prøver i løbet af de 4 uger projektet forløber.
- · De 5 prøver skal så vidt muligt udtages på samme dag.
- Prøverne skal udtages torsdag 12/2, onsdag 18/2, tirsdag 24/2 og mandag 2/3.
- Af de 5 prøver skal 3 prøver udtages ved Søborg Hovedgade 17-29 i Søborg, og 2 prøver udtages ved Statoil på Farum Hovedgade 76 i Farum.
- · Data om lokalisering, boringsudbygning og prøvetagningsdybder findes i den orange mappe.

Formål:

Formålet med prøvetagningen er at udtage vandprøver ved en meget lav pumpeydelse (0,2-0,4 l/min.) fra en bestemt dybde i filtrene. Den lave pumpeydelse skal sikre at grundvandet strømmer stille og roligt ind i filtret fra et smalt prøvetagningsinterval.

Vandprøverne er forurenet med flygtige kulbrinter (benzin/olie, MTBE, klorerede kulbrinter).

Pumpe:

Der skal anvendes én specifik MP1 pumpe til hver boring, og den samme pumpe og slange skal anvendes til samme boring ved hver af de 4 prøvetagningsrunder. De 5 benyttede pumper og slanger må ikke anvendes til andre formål under forløbet af projektet.

Pumper og slanger opbevares i separate rene klare plastposer imellem prøvetagningerne.

Rengøring af pumper:

Inden første prøvetagning skal pumperne vaskes udvendigt med børste, og pumpes igennem med rent lunkent vand.

Slange:

Hver af de 5 pumper skal monteres med en ny 8/10 mm teflonslange. Slangerne genanvendes til samme boring ved hver prøvetagningsrunde.

Målegris:

Under forpumpning skal vandet løbe gennem en målegris, hvori der er monteret sonder til registrering af ledningsevne, pH, temperatur og ilt-indhold. Målesonderne skal være kalibreret og kontrolleret inden brug.

løbende registreres ledningsevne, pH, temperatur og ilt-indhold. Online parametrene skal registreres hver 3.-5. minut og straks nedskrives i skema (skemaer findes i orange mappe).

Placering af pumpe:

Pumpen skal forsigtigt placeres i filtret således, at pumpernes vandindtag er ud for de dybder der er opført i den orange mappe.

Pumpen trækkes langsomt lidt op og ned omkring prøvetagningspunktet for at fjerne gammelt vand, og evt. udfældningsprodukter i filtret, ca ½ m over og under prøvetagningspunktet. Der måles også med målegris under denne procedure.

Pejling:

Vandstanden i boringen skal pejles inden placering af pumpe, under forpumpning med 0,5 - 5 minutters interval, samt lige inden prøvetagningen.

Forpumpning:

- Forpumpningen skal ske ved mikroforpumpning (bekrevet s. 89 i "Håndbog i prøvetagning af jord og grundvand" fra AVJ.
- Der skal forpumpes med en tilstrækkelig lav ydelse til at sænkningen af vandspejlet i pumpeboringen generelt ikke overstiger 0,1 m.
- Under forpumpningen ledes vandet gennem målegrisen, og hvert 3. 5. minut skal ledningsevne, pH, temperatur og ilt-indhold registreres, og straks nedskrives i feltskemaerne i den orange mappe.

Kriterier for stop af forpumpning:

Vandprøverne kan udtages når **ledningsevne** og **pH** er stabilt i 3 på hinanden følgende målinger. Stabil ledningsevne = +/- 3% variation. Stabilt pH = +/- 0,1(Stabilt ilt-indhold = +/- 0,3 mg O2/liter).

Prøvetagning:

Lige før prøvetagningen skal pumpeydelsen drosles ned så **vandspejlet i pumpeboringen stiger**, **og vandprøven udtages under stigende vandspejl.** Vandprøven udtages efter at der er oppumpet mindst 1 liter efter neddrosling af pumpen.

Vandspejlsstigningen under prøvetagningen skal dokumenteres ved pejlinger som skal noteres, og pumpeydelsen skal måles og noteres på feltskemaet.

Fyldning af prøveflasker:

Prøvetagningsslangen føres ned til bunden af flasken, og flasken fyldes helt op under en stille vandstrømning. Flaskerne fyldes så mindst 2 voluminer løber over inden slangen fjernes og flasken lukkes.

Flaskerne udstyres med labels.

ANNEKS B

Skemaer med feltmålinger og –observationer ved vandprøvetagningen

Projekt 32294 – Vandprøvetagning i Farum og Søborg for DHI

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt r	nr.: 32294	1		Udført a	if: MCK/NC	Н		Da	ato: 2009/02/12
Boring: B17			DGU-nr	.: 193.227	7		Filterniv	eau (m.u.m	p.): 8,2-	- 15,2	Di	iameter (mm): 63
Anvendt pu	mpe: MI	P1					Slangen	nateriale: Te	flon 8X1	0	Bı	und (m.u.mp.): 15,03
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
Start	11:25 11:30	12,0	9,30 9,30	2,0		8,09	11,9	704	0,66	-	130	Målepunkt = terræn Uklar rødlig okker farve
	11:35	11,5	9,36	1,2		7,27	13,6	699	0,26	-	128	do
	11:40	12,5	9,37	1,2		7,18	14,0	686	0,16	-	129	Let uklar, svag farve
	11:45	12,0	9,35	1,2		7,20	14,5	691	0,40	-	130	do.
	11:55	12,0	9,36	1,2		7,13	14,7	688	0,15	-	135	Klar, der er meget fint sand i
	12:10	12,0	9,38	1,2		7,12	14,7	714	0,12	-	135	boringen, svært at holde den
	12:15	12,0	9,35	1,2		7,10	14,7	713	0,13	-	135	lave ydelse, pumpe slår fra
	12:25 12,0 9,38 1,2					7,12	14,8	739	0,10	-	135	do.
	12:27 12,0 9,38 1,2						14,5	763	0,09	-	135	do.
	12:33	12,0	9,37	1,2		7,11	14,4	769	0,09	-	135	do.
Stop	12:44	12,0	9,33	0,8	Ca. 90 I	7,11	14,2	797	0,14	-	125	Klar, prøve taget

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført a	af: MCK/NC	Н		Da	ato: 2009/02/18
Boring: B17			DGU-nr	: 193.227	77		Filterniv	eau (m.u.m	p.): 8,2-	- 15,2	Di	ameter (mm): 63
Anvendt pu	mpe: MI	P1					Slanger	nateriale: Te	eflon 8X1	0	Bı	und (m.u.mp.): 15,03
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
Start	t 11:58 11,5 9,29 1,2 9,							718	3,73	-	128	Målepunkt = terræn Uklar rødlig okker farve
	12:02 11,5 9,34 1,2 7							686	0,40	-	128	do.
	12:05	10,5	9,33	1,8		7,12	13,9	693	0,37	-	136	Let uklar, svag farve,fint sand
	12:10	11,0	9,38	1,8		7,10	13,6	666	0,22	-	136	Let uklar
	12:15	11,0	9,41	1,6		7,14	13,6	673	0,14	-	133	Klar, fint sand i vandet
	12:18	11,0	9,39	1,6		7,11	11,7	548	0,14	-	133	do. led.evne usikker
	12:26	11,0	9,39	1,6		7,13	13,8	715	0,11	-	133	do.
	12:33 11,0 9,39 1,6 7						13,8	731	0,11	-	133	do.
	12:44 11,0 9,31 0,6 7,12							751	0,10	-	124	do . + prøve
Stop	12:48				Ca. 60 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført a	f: MCK/NC	Н		D	ato: 2009/02/24
Boring: B17			DGU-nr.	: 193.227	77		Filterniv	eau (m.u.m	p.): 8,2-	- 15,2	D	iameter (mm): 63
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	eflon 8X1	0	B	und (m.u.mp.): 15,03
Pumpning	umpning KI. (m.u.mp.) (I/min) Pumpe- dybde sænkning Ydelse vand- (m.u.mp.) (m.u.mp.) (I/min) mængde							Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
Start	11:22	11,0	9,31	1,2		8,06	9,8	738	3,59		128	Uklar, rødlig okker farve
	11:26 11,0 9,35 1,8						13,5	672	1,07		133	do. lidt fint sand
	11:32	11,5	9,38	1,8		7,11	14,1	686	0,28		133	Let uklar, fint sand
	11:40	10,5	9,38	1,9		7,08	14,9	675	0,54		135	Klar
	11:44	11,0	9,41	1,9		7,11	13,8	684	0,14		135	do.
	11:50	11,0	9,42	1,9		7,11	13,8	692	0,12		135	do.
	11:56 11,0 9,33 0,8 7							715	0,23		125	do . + prøve
Stop	12:00				Ca. 60 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/03/02
Boring: B17			DGU-nr	.: 193.227	77		Filterniv	eau (m.u.m	p.): 8,2-	- 15,2	Di	iameter (mm): 63
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	eflon 8X1	0	В	und (m.u.mp.): 15,03
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn
Start	8:15	11,0	9,23	1,8		7,86	10,9	682	1,5		135	Uklar, rødlig-gul okker farve
	8:20 11,5 9,32 1,6						13,2	661	0,18		133	Let uklar, fint sand
	8:25	10,5	9,31	1,6		7,28	15,3	673	0,19		133	Næsten klar,lidt fint sand
	8:30	11,0	9,32	1,6		7,26	1 <mark>6</mark> ,3	667	0,21		134	Klar
	8:35	11,0	9,33	1,6		7,14	13,6	674	0,11		134	do.
	8:40	11,0	9,35	1,6		7,15	13,4	692	0,10		134	do.
	8:45	11,0	9,27	0,9		7,16	13,4	687	0,11		125	do . + prøve
Stop	8:50				Ca. 50 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt r	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/02/12
Boring: B18			DGU-nr.	: 193.227	78		Filterniv	eau (m.u.m	o.): 8,3 -	- 15,3	Di	ameter (mm): 63
Anvendt pu	mpe: MI	P1					Slanger	nateriale: Te	flon 8X1	0	Bi	und (m.u.mp.): 15,10
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
	8:32 9,18											Målepunkt = terræn
Start	art 9:05 12,0 9,18 0,5 7,						18,2	768	4,01	-	126	Kan ikke bruge målegris ved
	9:55	12,0	9,26	7,31	16,3	723	0,18	-	135	Så lav ydelse. Der er brugt tid		
	10:08	12,0	9,29	1,2		7,29	14,5	723	0,14	-	130	På at teste systemet og ind-
	10:15	12,0	9,29	1,2		7,65	14,6	729	0,06	-	130	køre det. Under forpump.
	10:23	12,0	9,29	1,2		7,68	14,6	728	0,05	-	130	Har pumpe været i samme
	10:31	12,0	9,29	1,2		7,26	14,6	729	0,05	-	130	dybde. Der er pumpet
	10:35	12,0	9,29	1,2		7,26	14,6	732	0,06	-	130	væsentligt flere liter end
	10:50 12,0 9,21 0,6 ca. 90 l 7							731	0,10	-	122	planlagt. Klart vand. Prøvetagn.
												Målegris opgivet, flaske er
												herefter anvendt som gris.
Stop	10:58				Ca. 95 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	1		Udført a	af: MCK/NC	Η		Da	ato: 2009/02/18		
Boring: B18			DGU-nr	.: 193.227	78		Filterniv	eau (m.u.m	o.): 8,3 -	- 15,3	Di	iameter (mm): 63
Anvendt pu	impe: MI	P1					Slanger	nateriale: Te	eflon 8X1	0	Bı	und (m.u.mp.): 15,10
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)		
												Målepunkt = terræn
Start	13:02	12,0	9,19	1,8		7,82	8,9	761	1,59	-	135	Let uklar rød-gul farve
	13:05 12,0 9,31 2,0 7						13,7	720	0,29	-	138	do.
	13:10	12,5	9,31	1,8		7,29	13,9	709	0,28	-	134	Let uklar
	13:14	11,5	9,31	1,8		7,25	13,6	731	0,17	-	134	Klar
	13:20	12,0	9,31	1,8		7,26	13,6	711	0,11	-	134	do.
	13:25	12,0	9,31	1,8		7,25	11,7	716	0,09	-	134	do.
	13:30 12,0 9,31 1,8							718	0,08	-	134	do.
	13:35	12,0	9,31	1,8		7,33	13,8	720	0,08	-	134	do.
	13:38 12,0 9,31 1,8 7,2							721	0,08	-	134	do.
	13:40	12,0	9,20	0,6		7,25	13,7	721	0,10	-	123	Klar +prøve
Stop	13:42				Ca. 75 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/02/24
Boring: B18			DGU-nr	.: 193.227	78		Filterniv	eau (m.u.m	o.): 8,3 -	- 15,3	Di	iameter (mm): 63
Anvendt pu	mpe: Ml	P1					Slanger	nateriale: Te	eflon 8X1	0	В	und (m.u.mp.): 15,10
Pumpning	Pumpe- Pejling/af- Pumpet dybde sænkning Ydelse vand- (m.u.mp.) (m.u.mp.) (l/min) mængde							Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn
Start	t 12:10 12,0 9,21 1,8							1183	1,83	-	135	Let uklar rød-gul farve
	12:14 12,0 9,32 1,8						13,5	725	0,22	-	135	do.
	12:18	12,5	9,34	1,8		7,29	13,8	716	0,13	-	135	Let uklar
	12:24	11,5	9,33	1,8		7,26	13,8	724	0,13	-	135	Klar
	12:30	12,0	9,34	1,8		7,25	13,8	725	0,11	-	135	do.
	12:35	12,0	9,34	1,8		7,24	13,9	731	0,09	-	135	do.
	12:38	12,0	9,23	0,6		7,29	13,8	729	0,10	-	124	Klar +prøve
Stop	12:42				Ca. 50 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/03/02
Boring: B18			DGU-nr.	: 193.227	78		Filterniv	eau (m.u.m	o.): 8,3 -	- 15,3	Di	ameter (mm): 63
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	eflon 8X1	0	Bı	und (m.u.mp.): 15,10
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
Start	art 9:00 12,0 9,13 1,8							760	0,96	-	135	Let uklar rød-gul farve
	9:05 12,0 9,23 1,8						13,1	732	0,23	-	135	do.
	9:10	12,5	9,27	1,8		7,34	13,8	719	0,22	-	135	Uklar ingen farve
	9:15	11,5	9,28	1,8		7,30	14,2	751	0,14	-	135	Klar
	9:20	12,0	9,28	1,8		7,27	13,8	732	0,08	-	135	do.
	9:25	12,0	9,28	1,8		7,27	13,8	733	0,08	-	135	do.
	9:30	12,0	9,28	1,8		7,26	13,9	734	0,08	-	122	do.
	9:35 12,0 9,17 0,6 7							732	0,07	-		Klar +prøve
Stop	9:40				Ca. 66							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/02/12
Boring: C8			DGU-nr	: 201.585	55		Filterniv	eau (m.u.m	o.): 11,5	- 15,0	Di	ameter (mm): 63
Anvendt pu	mpe: Ml	P1					Slanger	nateriale: Te	flon 8X1	0	Bı	und (m.u.mp.): 14,67
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
												Målepunkt = terræn
Start	13:48	13,0	9,05	1,8		8,44	9,8	1970	1,38	-	130	Felt målingerne er foretaget
	13:52 13,0 9,08 1,5 7							2013	0,31	-	128	I 500 ml redcap flaske
	13:58	13,5	9,08	1,5		6,88	14,2	2041	0,42	-	128	Dette gælder for alle boringer
	14:04	12,5	9,08	1,2		7,07	14,1	2017	0,36	-	125	
	14:10	13,0	9,08	1,2		7,00	14,8	2045	0,30	-	125	
	14:14	13,0	9,08	1,2		6,99	14,7	2067	0,29	-	125	
	14:20 13,0 9,08 1,2							2071	0,27	-	125	
	14:25 13,0 9,08 1,2 7							2091	0,30	-	125	
	14:31 13,0 9,04 0,8 7,0							2069	0,80	-	120	Klar prøve udtaget
Stop	14:34				Ca. 55 I							

Projektnavn Farum og S	Projektnavn: Vandprøvetagning, Projekt nr.: 32294 Farum og Søborg								Н		D	ato: 2009/02/18
Boring: C8			DGU-nr	.: 201.585	55		Filterniv	eau (m.u.m	p.): 11,5	- 15,0	D	iameter (mm): 63
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	eflon 8X1	0	B	und (m.u.mp.): 14,67
Pumpning	umpning KI. (m.u.mp.) (l/min) Pumpe- dybde sænkning Ydelse vand- (m.u.mp.) (m.u.mp.) (l/min) mængde							Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
												Målepunkt = terræn
Start	art 8:18 13,0 9,06 1,5 7						10,5	2043	2,67	-	126	Let uklar, rådden lugt
	8:21 13,0 9,08 1,5						13,8	2171	0,48	-	126	do.
	8:26	13,5	9,09	1,5		6,90	14,7	2176	0,29	-	126	Klar, svag rådden lugt
	8:30	12,5	9,09	1,5		6,94	14,4	2159	0,25	-	126	Let uklar, grumset +lugt
	8:35	13,0	9,09	1,5		6,96	15,1	2148	0,20	-	126	Klar, svag rådden lugt
	8:40	13,0	9,09	1,5		6,95	15,2	2149	0,19	-	126	do.
	8:45 13,0 9,06 0,8 6							2150	0,18	-	120	do. prøve udtaget
Stop	8:48				Ca. 45 I							

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført a	f: MCK/NC	Η		Da	ato: 2009/02/24
Boring: C8			DGU-nr	.: 201.585	55		Filterniv	eau (m.u.m	o.): 11,5	- 15,0	Di	iameter (mm): 63
Anvendt pu	mpe: Ml	P1					Slanger	nateriale: Te	flon 8X1	0	В	und (m.u.mp.): 14,67
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)
Start	8:08	13,0	9,09	1,8		8,52	9,1	1868	5,40	-	130	Let uklar, rådden lugt
	8:12	13,0	9,13	7,13	13,4	1971	0,37	-	128	do.		
	8:18	13,5	9,13	1,5		7,04	13,9	1852	0,24	-	128	do.
	8:24	12,5	9,13	1,5		7,04	13,8	1783	0,19	-	128	Klar, let rådden lugt
	8:30	13,0	9,13	1,5		7,03	14,5	1812	0,18	-	128	do.
	8:35	13,0	9,13	1,5		7,01	14,8	1831	0,19	-	128	do.
	8:39	13,0	9,13	1,5		7,01	14,9	1824	0,19	-	128	do.
	8:44 13,0 9,10 0,6 7,							1833	0,17	-	120	do. prøve udtaget
Stop	8:46				Ca. 57 I							

Projektnavr Farum og S	n: Vandp Søborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført af: MCK/NCH					ato: 2009/03/02	
Boring: C8			DGU-nr.	.: 201.585	55		Filterniveau (m.u.mp.): 11,5 – 15,0 Diameter (mm): 63						
Anvendt pu	impe: M	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 14,68						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)	
Start	11:12	13,0	9,06	1,8		8,94	9,8	1530	3,04	-	130	Målepunkt = terræn Uklar, rådden lugt	
	11:15	13,0	9,11	1,8		7,53	11,8	1720	0,58	-	130	do.	
	11:20	13,5	9,11	1,8		6,99	14,4	2081	0,19	-	130	Let uklar rådden lugt	
	11:30	12,5	9,11	1,8		6,99	14,5	2082	0,19	-	130	Klar, let rådden lugt	
	11:40	13,0	9,11	1,8		7,20	14,5	2100	0,14	-	130	do.	
	11:45	13,0	9,11	1,8		7,10	14,5	2112	0,13	-	130	do.	
	11:50	13,0	9,11	1,8		7,00	14,5	2113	0,13	-	130	do.	
	11:55	13,0	9,09	0,6		6,99	15,5	2121	0,16	-	122	do. prøve udtaget	
	11:59				Ca. 80 I								

Prøvetagningsrapport

Projektnavr Farum og S	: Vandp øborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført af: MCK/NCH					Dato: 2009/02/12	
Boring: C11			DGU-nr.	.: 201.585	51		Filterniveau (m.u.mp.): 7,0 – 13,0 Diameter (mm): 63						
Anvendt pu	impe: Ml	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,94						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (l/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)	
Start	15:58	11,0	9,10*	1,4		7,19	11,2	1860	2,31	-	130	Målepunkt = terræn Uklar rødlig okker farve	
	16:01	11,0	9,08	1,4		6,80	13,4	1882	0,60	-	130	do.	
	16:06	10,5	9,16**	1,4		6,76	14,2	1933	0,40	-	130	Let uklar ingen farve	
	16:12	11,5	9,16**	1,8		6,78	13,8	2015	0,38	-	130	Let uklar ingen farve	
	16:20	11,0	9,08	1,4		6,76	14,1	2029	0,36	-	130	Klar	
	16:24	11,0	9,08	1,4		6,77	14,1	2032	0,37	-	130	do.	
	16:30	11,0	9,08	1,4		6,78	14,1	2041	0,36	-	130	do.	
	16:38	11,0	9,04	0,6		6,78	16,0	1998	0,95	-	120	do. prøve udtaget	
Stop	16:42				Ca. 60 I								

* Muligvis fejl, skulle muligvis være 9,01 m u. mp. ** Muligvis fejl, skulle muligvis være 9,06 m u. mp.

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført af: MCK/NCH					Dato: 2009/02/18	
Boring: C11			DGU-nr	.: 201.585	51		Filterniveau (m.u.mp.): 7,0 – 13,0 Diameter (mm): 63						
Anvendt pu	impe: Ml	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,94						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)			
Start	10:38	11,0	9,02	1,4		8,58	9,1	2065	3,02	-	128	Målepunkt = terræn Let uklar, svag rødlig farve	
	10:42	11,0	9,06	1,4		7,16	9,8	2028	0,56	-	128	do.	
	10:48	10,5	9,07	1,4		6,76	10,7	2029	0,34	-	128	Klar	
	10:52	11,5	9,06	1,4		6,72	15,4	2000	0,50	-	128	do.	
	10:57	11,0	9,06	1,4		6,75	14,7	2087	0,39	-	128	do.	
	11:02	11,0	9,07	1,4		6,74	14,4	2089	0,35	-	128	do.	
	11:08	11,0	9,07	1,4		6,78	14,4	2090	0,36	-	128	do.	
	11:13	11,0	9,04	0,6		6,75	15,1	2078	0,41	-	121	do. prøve udtaget	
Stop	11:17				Ca. 50 I								

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført af: MCK/NCH					Dato: 2009/02/24		
Boring: C11			DGU-nr	.: 201.585	51		Filterniveau (m.u.mp.): 7,0 – 13,0 Diameter (mm): 63							
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	eflon 8X1	В	3und (m.u.mp.): 12,94			
Pumpning	umpning KI. (m.u.mp.) Pejling/af- Pumpet dybde sænkning Ydelse vand- (m.u.mp.) (l/min) mængde							Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn		
Start	10:10	11,0	8,86	1,4		7,70	10,2	2149	2,35	-	128	Let uklar, svag rødlig farve		
	10:14	11,0	8,90	1,4		6,80	13,3	2128	0,61	-	128	do.		
	10:20	11,5	8,91	1,4		6,78	14,1	2163	0,64	-	128	Næsten klar		
	10:25	10,5	8,91	1,4		6,71	14,5	2135	0,82	-	128	Klar		
	10:30	11,0	8,91	1,4		6,71	14,3	2194	0,74	-	128	do.		
	10:35	11,0	8,91	1,4		6,72	14,3	2192	0,71	-	128	do.		
	10:42	11,0	8,91	1,4		6,76	14,3	2201	0,71	-	128	do.		
	10:45	11,0	8,88	0,6		6,78	14,8	2197	0,69	-	121	do. prøve udtaget		
Stop	10:48				Ca. 50 I									

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført af: MCK/NCH				D	Dato: 2009/03/02		
Boring: C11			DGU-nr	.: 201.585	51		Filterniveau (m.u.mp.): 7,0 – 13,0 Diameter (mm): 63							
Anvendt pu	mpe: M	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,94							
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn			
Start	12:15	11,0	8,61	1,4		8,10	9,2	2262	4,3	-	128	Let uklar, rødgul farve		
	12:20	11,0	8,66	1,4		6,86	13,4	2227	0,48	-	128	do.		
	12:25	10,5	8,66	1,4		6,82	14,0	2231	1,01	-	128	Klar		
	12:30	11,5	8,65	1,4		6,86	14,0	2260	1,10	-	128	do.		
	12:40	11,0	8,65	1,4		6,83	14,0	2272	1,06	-	128	do.		
	12:45	11,0	8,65	1,4		6,84	14,1	2289	0,97	-	128	do.		
	12:50	11,0	8,65	1,4		6,84	14,0	2291	0,92	-	128	do.		
	12:55	11,0	8,63	0,6		6,84	14,7	2301	0,92	-	122	do. prøve udtaget		
Stop	12:58				Ca. 60 I									

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført af: MCK/NCH					Dato: 2009/02/12	
BoringC14			DGU-nr	.: 201.585	58		Filterniveau (m.u.mp.): 6,0 – 13,0 Diameter (mm): 63						
Anvendt pu	mpe: MI	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,32						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)		
												Målepunkt = terræn	
Start	14:48	11,5	9,56	1,4		8,23	9,7	11213	2,74	-	130	Sort, kraftig olielugt	
	14:52	11,5	9,71	1,4		7,02	14,1	2032	0,42	-	130	Grå, kraftig olie lugt	
	14:56	11,0	9,72	1,4		6,96	15,0	1935	0,21	-	130	Delvis klar, m. sorte flager	
	15:02	12,0	9,63	1,4		6,98	14,8	1909	0,17	-	130	og svagere olie lugt	
	15:10	11,5	9,64	1,4		6,98	14,9	1878	0,15	-	130	do.	
	15:15	11,5	9,64	1,4		6,98	14,9	1874	0,14	-	130	do.	
	15:18	11,5	9,64	1,4		6,97	14,9	1877	0,14	-	130	Klar, svarlig olie lugt	
	15:28	11,5	9,60	0,8		6,99	16,0	1821	0,20	-	123	do. prøve udtaget	
Stop	15:30				Ca. 60 I								

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført af: MCK/NCH				D	Dato: 2009/02/18	
BoringC14			DGU-nr.	.: 201.585	58		Filterniv	eau (m.u.m	o.): 6,0 -	D	iameter (mm): 63		
Anvendt pu	mpe: M	P1					Slanger	nateriale: Te	flon 8X1	0	В	und (m.u.mp.): 12,32	
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	pН	Temp. (°C)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve)	
Start	9:10	11.3	9 58	14		7 84	94	2146	1.73	_	128	Målepunkt = terræn Oliefilm, sort kraftig olielugt	
	9:15	11,3	9,64	1,4		6,98	14,5	1882	0,42	-	128	Grå svagere olielugt	
	9:20	10,8	9,64	1,4		6,95	15,3	1829	0,27	-	128	do.	
	9:25	11,8	9,64	1,4		6,97	13,4	1925	0,16	-	128	Sort svag olielugt	
	9:30	11,3	9,64	1,4		6,95	1 <mark>6</mark> ,6	1858	0,17	-	128	Let sort +lugt	
	9:40	11,3	9,64	1,4		7,35	15,5	1863	0,19	-	128	let uklar +lugt	
	9:50	11,3	9,64	1,4		6,96	15,3	1876	0,18	-	128	Klar +lugt	
	9:55	11,3	9,64	1,4		6,95	15,3	1879	0,18	-	128	Klar +lugt	
	9:56	11,3	9,61	0,6		6,94	15,4	1873	0,17	-	124	Klar +lugt, prøve udtaget	
Stop	9:59				Ca. 70 I								

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt ı	nr.: 32294	1		Udført af: MCK/NCH					ato: 2009/02/24	
BoringC14			DGU-nr	.: 201.585	58		Filterniveau (m.u.mp.): 6,0 – 13,0 Diameter (mm): 63						
Anvendt pu	mpe: M	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,32						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Pumpet vand- mængde	pН	Temp. (ºC)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn		
Start	8:56	11,5	9,60	1,5		7,73	9,5	2139	2,53	-	129	Uklar grå olielugt	
	9:00	11,5	9,65	1,5		7,01	14,0	1982	0,38	-	129	do.	
	9:04	12,0	9,64	1,5		6,94	15,1	1976	0,24	-	129	Let uklar, olielugt	
	9:10	11,0	9,65	1,5		6,93	15,3	1875	0,27	-	129	do.	
	9:15	11,3	9,65	1,5		6,94	15,2	1921	0,18	-	129	do. lidt oliefilm	
	9:20	11,3	9,65	1,5		6,94	15,5	1894	0,18	-	129	do.	
	9:30	11,3	9,65	1,5		7,11	15,5	1900	0,17	-	129	Klar +lugt	
	9:42	11,3	9,65	1,5		6,97	15,5	1900	0,17	-	129	do.	
	9:45	11,3	9,61	0,4		6,98	15,6	1900	0,18	-	123	do. prøve udtaget	
Stop	9:48				Ca.75 I								

Projektnavn Farum og S	: Vandp øborg	røvetagning	, Projekt i	nr.: 32294	1		Udført af: MCK/NCH					ato: 2009/03/02	
BoringC14			DGU-nr.	.: 201.585	58		Filterniveau (m.u.mp.): 6,0 – 13,0 Diameter (mm): 63						
Anvendt pu	impe: M	P1					Slangemateriale: Teflon 8X10 Bund (m.u.mp.): 12,32						
Pumpning	KI.	Pumpe- dybde (m.u.mp.)	Pejling/af- sænkning (m.u.mp.)	Ydelse (I/min)	Pumpet vand- mængde	рН	Temp. (ºC)	Lednings- evne (µS/cm)	llt (mg/l)	Redox (mV)	Hz	Bemærkninger (farve og lugt af prøve) Målepunkt = terræn	
Start	10:08	11,3	9,59	1,5		11,5	10,2	2328	2,3	-	128	Sort, olielugt	
	10:12	11,3	9,64	1,5		7,04	14,1	2036	0,50	-	128	do.	
	10:16	11,0	9,64	1,5		6,97	15,2	1872	0,20	-	128	Uklar, grå olielugt	
	10:25	12,0	9,63	1,5		6,97	15,2	1896	0,17	-	128	do.	
	10:30	11,3	9,64	1,5		6,98	15,3	1883	0,16	-	128	Let uklar grålig olielugt	
	10:35	11,3	9,64	1,5		6,96	15,3	1898	0,15	-	128	Klar, svagere olielugt	
	10:40	11,3	9,64	1,5		7,00	15,4	1897	0,15	-	128	do.	
	10:45	11,3	9,64	1,5		6,97	15,3	1891	0,15	-	128	do.	
	10:55 11,3 9,61 0,5						15,7	1909	0,16	-	123	do. prøve udtaget	
	10:59				Ca. 75 I								

