

LUMIStox 300 Bench Top Luminometer ECLOX Handheld Luminometer

Joint test report

Luminescent bacteria test for use in wastewater

Handheld ECLOX

LUMIStox 300

August 2011

Final version

LUMIStox 300 Bench Top Luminometer ECLOX Handheld Luminometer

Joint test report

Agern Allé 5 DK-2970 Hørsholm Denmark

Tel: +45 4516 9200 Fax: +45 4516 9292 clj@dhigroup.com www.dhigroup.com

		1					
Vendo	·	Vendors representative					
	HACH-LANGE GmbH	Dr. Elmar Grabert					
Project		Project No)				
	DANETV	1180	00378				
Authors	5	Date					
	Claus Jørgensen, Mette Tjener Andersson	Aug	ust 2011				
		Approved	by				
		Beris	slav Tom	icic			
1	Final	CLJ/MTA	MWN	BET	20110831		
0	Test report for review	CLJ/MTA	MWN	HGE	20100604		
Revision	Description	Ву	Checked	Approved	Date		
Key wo	ords	Classifica	tion				
	Acute toxicity; EC ₅₀ ; ECLOX; ISO 11348-3;	🖂 Ope	en				
	Luminescent bacteria, LOWIStox, Wastewater	🗌 Inte	ernal				
		🗌 Pro	prietary				

Distribution		No of copies
	CLJ, MTA, MWN Dr. Elmar Grabert	File distribution
Battelle	Mary Schrock	Only
ETV Canada	Mona El-Hallak	

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	
2	INTRODUCTION	
2.1	Verification protocol reference	
2.2	Name and contact of vendor	1
2.3	Name of center/test responsible	1
2.4	Expert aroup	2
2.1		
3	TEST DESIGN	2
3.1	Test sites	6
3.1.1	Types	6
3.1.2	Addresses	6
3.1.3	Test equipment	6
3.2	Tests	7
3.2.1	Test methods	7
3.2.2	Test staff	9
3.2.3	Type and number of samples	10
3.2.4	Operation conditions	10
3.2.5	Operation measurements	10
3.2.6	Product maintenance	
3.2.7	Health, safety and wastes	12
4		40
4	Angle tige Light angle and ANALYSIS	L
4.1		13
4.2	Analytical parameters.	13
4.3	Methods of test and analysis	
4.4	Analytical performance requirements	
4.5	Preservation and storage of reference samples	15
5	DATA MANAGEMENT	15
5.1	Data storage, transfer and control	15
6	QUALITY ASSURANCE	16
6.1	Test plan review	16
6.2	Performance control – reference test and analysis	
6.3	Test system control	
6.4	Data integrity check procedures	
6.5	Test system audits	
6.6	Test report review	19
7		40
/ 7 1	Test data summany	
1.1	rest uala summary	20
7.1.1	Denge of application	20
7.1.2		
1.1.3	A graph with appended welves	
7.1.4	Agreement with accepted values	
7.1.5	KODUSTNESS	
1.2		
7.2.1	Color correction	
1.2.2	Requirements to reference standards and controls	

7.2.3	Lifetime of bacteria	
7.2.4	Software	
7.2.5	Target compounds	29
7.2.6	Bacteria activity and quantities of bacteria batches	
7.2.7	Bacteria activity and relation to EC-values	29
7.2.8	Log-log linearity	
7.3	Test quality assurance summary	
7.3.1	Reference analysis performance data	
7.3.2	Reference test performance data	
7.3.3	Test system control data	
7.4	Amendments to and deviations from test plan	

APPENDIX 1	
Terms and definitions used in the test plan	
APPENDIX 2	40
References	40
APPENDIX 3	42
Reference methods	42
APPENDIX 4	44
In-house test methods	44
APPENDIX 5	64
In-house analytical methods	64
APPENDIX 6	66
Test data report	66
APPENDIX 7	
Amendment and deviation reports for test	97

2 INTRODUCTION

Environmental technology verification (ETV) is an independent (third party) assessment of the performance of a technology or a product for a specified application, under defined conditions and quality assurance.

This verification is a joint verification between DANETV, the U.S. EPA ETV Advanced Monitoring Systems (AMS) Center and the ETV Canada. The objective of the verification was to evaluate the performance of a wastewater rapid toxicity technology that can be used to monitor industrial or domestic wastewater.

This verification and test report includes two products from one vendor.

2.1 Verification protocol reference

This test report is prepared in response to the test design established in the LUMIStox and ECLOX, test plan, for luminescent bacteria test for use in wastewater, 2009 /16/.

2.2 Name and contact of vendor

HACH-LANGE GmbH, Willstätterstrasse 11, 40549 Düsseldorf, Germany, phone +49 211 5288 0.

Contact: Dr. Elmar Grabert, email: elmar.grabert@hach-lange.de, phone +49 211 5288 241.

Web site: www.hach-lange.de

2.3 Name of center/test responsible

The Danish Centre for Verification of Climate and Environmental Technologies, DANETV), DHI DANETV Water Centre, DHI, Agern Allé 5, DK-2970 Hørsholm, Denmark.

Test responsible: Claus Jørgensen, email clj@dhigroup.com, phone +45 16 95 62.

U.S. EPA ETV Advanced Monitoring Systems Center (Battelle), Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201-2693, U.S.A.

Test responsible: Mary E. Schrock, email schrock@battelle.org, phone +1 614 424 4976.

ETV Canada, 2070 Hadwen Road Suite 201 A, Mississauga, Ontario L5K 2C9, Canada.

Test responsible: Mona El-Hallak, email melhallak@etvcanada.ca, phone +1 905 822 4133 extension 239.

2.4 Expert group

The expert group assigned to this test and responsible for review of the planning documents includes:

Dr. Joel Allen, email: allen.joel@epa.gov, phone +1 513 487 2806. U.S.EPA, Office of Research and Development/National Risk Management Research Laboratory/Water Supply and Water Resources Division/Water Quality Management Branch.

Associate Professor Kresten Ole Kusk, email: kok@env.dtu.dk, phone +45 4525 1569. Technical University of Denmark, Department of Environmental Engineering.

Dr. Ali Amiri, email: aamiri@oceta.on.ca, phone +1 905 822 41 33 ext 222. Ontario Center for Environmental Technology Advancement (OCETA).

This test report has been reviewed by Associate Professor Kresten Ole Kusk.

3 TEST DESIGN

Test compounds were selected as described in the joint verification protocol Appendix 3/1/. Due to problems dissolving three of the test compounds to toxic concentrations, the total number of compounds in the test was reduced from nine to six. The final test compounds are shown in Table 3.1. The compounds copper (heavy metal), flutriafol (pesticide), and nonylphenol ethoxylate (surfactant) were left out of the original test set-up for the reasons stated above. See details in deviations included in Appendix 7.

Group	CAS no.	Compound
Heavy metals	7733-02-0	Zn^{2+} as $ZnSO_4+7H_2O$
	7778-50-9	$Cr_2O_7^{2-}$ as $K_2Cr_2O_7$
Organic pollu-	3380-34-5	Triclosan (2,4,4'-trichloro-2'-
tants		hydroxydiphenyl ether)
Industrial pollu-	57-12-5	CN ⁻ (cyanide) as KCN
tants		
Surfactants	151-21-3	SDS (sodium lauryl sulphate)
	57-09-0	CTAB (cetyl trimethyl ammonium bro-
		mide)

Table 3.1 Test compounds.

The test design as performed is summarized in Table 3.2. Acronyms are explained in Appendix 1.

Test results are EC_{20} and EC_{50} values, representing the concentration causing respectively 20 % and 50 % inhibition of the luminescence of the *Vibrio fischeri* population. For tests where the luminometer was not connected to a PC with LUMISsoft4 software, results are given as % inhibition. This is the case for one test performed with the ECLOX (Test E).

All tests were performed in plastic cuvettes except for test L where LUMIStox robustness towards cuvettes (glass or plastic) was evaluated.

Table 3.2 Test design.

Test		Equipr	nent tested					Prec	ision	5	
		LUMIStox	ECLOX incl. thermostat and software	ECLOX incl. firmware	Matrix	Criterion of detec tion (CD)	Range	Repeatability	Reproducibility	Agreement with a cepted values	Robustness
A	Test of dilution series (9 dilutions) for six compounds. 3 test replicates (includes 2 measurement replicates each). Optimal concentrations result in inhibitions of 10-90 %	x	x		2 % NaCl MilliQ		x	x		x	
В	Test of series of 9 blanks (incl. bacteria suspension, but no sample)	x	x		2 % NaCl MilliQ	x					
С	Test of 2 dilution series (9 dilutions) for 1 compound. Max. concentrations in dilution EC_{30} , and EC_{60} , respectively. 3 tests replicates (includes 2 measurement replicates each)	x	x		2 % NaCl MilliQ						Effect of initial concentration on repeatability
D	Test of dilution series for 1 compound. Dilution as used in test A. 3 test replicates (includes 2 measurement replicates each). Repeated on 3 different days with 3 different bacteria batches (test A is equal to first test day)	x	X		2 % NaCl MilliQ				x		
E	3 concentrations ~ EC_{20} , EC_{50} , EC_{80} for 2 compounds (metal and organic). 3 test replicates (no further replicates). Per- formed at 3 possible outdoor temperatures: 5°C, 16°C and 23°C. Measurement only after 15 minutes of inhibition			x	2 % NaCl MilliQ			x			Sample tempera- ture at field use
F	Concentration ~ EC_{20} for 1 compound. For temperatures of 14°C, 15°C and 16°C. 3 test replicates (includes 2 measurement replicates each)	x	x		2 % NaCl MilliQ						Sample tempera- ture at laboratory use

Test		Equipr	nent tested					Prec	ision	ს	
		LUMIStox	ECLOX incl. thermostat and software	ECLOX incl. firmware	Matrix	Criterion of detec tion (CD)	Range	Repeatability	Reproducibility	Agreement with a cepted values	Robustness
G	Concentration ~ EC_{20} for 1 compound. For pH 6.0, 7.0 and 8.5, 3 test replicates (includes 2 measurement replicates each)	x	x		2 % NaCl MilliQ						рН
H	Concentration ~ EC_{20} for 1 compound. Addition of color in three concentrations and 1 with no color. 3 test replicates (includes 2 measurement replicates each). Include blinds with each color concentration and no sample. LUMIStox with color correction, ECLOX with correction cuvettes according to ISO 11348-3	x	X		2 % NaCl MilliQ						Color
1	Concentration ~ EC_{20} for 1 compound. Addition of turbid rea- gent/material in three concentrations and 1 with no material. The third being visibly turbid. 3 test replicates (includes 2 measurement replicates each). Include blinds with each tur- bid reagent/material concentration and no sample	x	X		2 % NaCl MilliQ						Turbidity
J	Spiked non-inhibiting domestic and industrial wastewater. Just for concentration ~ EC_{20} for 5 compounds, performed in wastewater and in 2 % NaCl MilliQ as reference. Blind con- taining only wastewater. 3 test replicates (includes 2 meas- urement replicates each)	x	x		2% NaClw aste- water						Matrix
К	Test of dilution series for undiluted and unspiked industrial and domestic wastewater. 2-3 test replicates (includes 2 measurement replicates each)	x	X		2% NaClw aste- water						Matrix

Test		Equipr	nent tested					Prec	ision	6	
		LUMIStox	ECLOX incl. thermostat and software	ECLOX incl. firmware	Matrix	Criterion of detection (CD)	Range	Repeatability	Reproducibility	Agreement with a cepted values	Robustness
L	Concentration ~ EC_{20} for 2 compounds. 3 replicates. Repeated 3 times. Test of use of glass and plastic cuvettes	x			2 % NaCl MilliQ						Cuvettes

3.1 Test sites

The laboratory tests were conducted at DHI, Hørsholm, Denmark.

3.1.1 Types

A domestic wastewater sample for laboratory testing was obtained from the Lundtofte wastewater treatment plant. Industrial wastewater was obtained from an industrial wastewater treatment plant at Cheminova, a producer of pesticides in north-western Jutland, Denmark.

The wastewaters were collected by the personnel at the treatment plants. The sample from Cheminova was sent cold to DHI. The sample from Lundtofte wastewater treatment plant was picked up by DHI personnel immediately after sampling and brought to DHI. Both wastewater samples were stored at DHI at 5°C until use.

MilliQ water from the DHI laboratory with NaCl added to a concentration of 2 %, was used as diluent for the standard dilution series.

3.1.2 Addresses

Laboratory test: DHI, Agern Alle 5, DK-2970 Hørsholm.

Domestic wastewater: Renseanlæg Lundtofte, Hjortekærsbakken 12, DK-2800 Lyngby.

Industrial wastewater: Cheminova, Thyborønvej 78, DK-7373 Harboøre.

3.1.3 Test equipment

The test equipment and manuals include:

- LUMIStox 300 bench top luminometer and LUMIStherm thermostat. Described in:
 - LUMIStox 300. Manual. HACH-LANGE. Version 3.02 and above. BDA 356. January 2008.
 - Luminescent bacteria test with freeze-dried bacteria according to EN/ISO 11348-3. Luminescent bacteria test LCK 491. DR LANGE.
- ECLOX handheld luminometer with LUMIStherm thermostat and LU-MISsoft4 PC software or with firmware. Described in:
 - Luminescent bacteria test using the ECLOXTM instrument. User Manual. Hach Company. Edition Beta 2. September 2009.
- LUMISsoft4 PC software. Described in:
 - o Dr. Lange LUMISsoft 4. Manual. Version 1.001. LZV 093. 2000.
- Three LUMIStherm heating blocks.

The DR. LANGE manual LCK 491 for LUMIStox 300 specifies use of glass cuvettes (LZP 187) for the testing. HACH-LANGE informs that both glass cuvettes and plastic

test tubes (LZP 1480) can be used with LUMIStox 300. For ECLOX, HACH-LANGE specifies that plastic test tubes (LZP 1480) must be used. /13/ As mentioned earlier, all tests were performed in plastic cuvettes except for test L where LUMIStox robustness towards cuvettes (glass or plastic) was evaluated.

General laboratory equipment procedures including cleaning and calibration are those described and ISO 17025 accredited /5/ for the DHI laboratories under the laboratory services manual of the DHI Quality Management System /6/.

3.2 Tests

The test program was designed to comply with ISO 11348-3 Water quality – Determination of the inhibitory effect of water samples on the light emission of *Vibrio fischeri* (Luminescent bacteria test) /2/ and the instrument manuals (see section 3.1.3) and to retrieve information needed to determine performance parameters, as described in ISO/TR 13530 guide to analytical quality control for water analysis /12/, ISO 15839, Water Quality – On-line sensors/analysing equipment for water – Specifications and performance tests /3/, ICH Harmonised Tripartite Guideline for validation of analytical procedure /11/ as well as previous verifications of similar equipment for drinking water performed by U.S. EPA ETV and described in a public testplan /4/.

The test design, as described in Table 3.2, included three test set-ups:

- LUMIStox 300 bench top lumiometer with LUMIStherm thermostat and LU-MISsoft4 PC software.
- ECLOX with LUMIStherm thermostat and LUMISsoft4 PC software.
- ECLOX with use of firmware.

The main focus was on the laboratory set-up of LUMIStox 300 bench top and ECLOX in connection with LUMIStherm thermostat and LUMISsoft4 PC software, while ECLOX using firmware was tested to a less extent (only Test E).

The test was performed mainly in the laboratory, while two out of three parts of Test E on the ECLOX were performed in DHI climate chambers.

3.2.1 Test methods

Luminescence tests with *Vibrio fischeri* are described in a three-part standard ISO method /2/. Part 1 requires use of freshly prepared bacteria, part 2 uses liquid-dried bacteria, while part 3 uses freeze-dried bacteria. The LUMIStox and ECLOX use freeze-dried bacteria. Therefore the following applies:

ISO 11348-3 Water quality – Determination of the inhibitory effect of water samples on the light emission of *Vibrio fischeri* (Luminescent bacteria test) – Part 3: Method using freeze dried bacteria.

This standard was incorporated in the manuals for LUMIStox and ECLOX. For ECLOX used in the field (Test E) a slightly modified method is used, main difference is no fixed temperature of samples and mixing of bacteria suspension with test sam-

ples is not 1:1 and in the ISO 11348-3 but instead 1:4. This is described in details in the manual for the ECLOX.

In test A dilution series of 9 dilutions were prepared for all selected compounds according to Annex B in ISO 11348-3. Each dilution was prepared and measured twice and the average was used as result. This was repeated 3 times. For all other tests except for test B and J, measurement was performed on compounds selected among the 6 target compounds at concentrations described in Table 3.2. The criterion of detection (Test B) and one of the robustness tests (Test J) analysis was performed on 2 % NaCl MilliQ water and on wastewater, respectively.

The determination of robustness against temperature at laboratory use (Test F), pH (Test G), color (Test H), turbidity (Test I) and type of cuvettes (Test L) was performed at one concentration (EC_{20}), while determination of robustness against initial concentration was performed at two concentrations (EC_{30} and EC_{60}) (Test C). The determination of robustness against temperature at field use (5, 16 and 23°C) (Test E) was performed at three concentrations (EC_{20} , EC_{50} and EC_{80}). The determination of robustness against the wastewater matrix with undiluted and unspiked industrial and domestic wastewater (Test K) was performed on dilutions series with 9 dilutions.

Stock solutions of each test compound were prepared in 2 % NaCl MilliQ water. Solid NaCl was added to wastewater used for Test J and K to obtain the salt concentration required for testing with the marine bacteria, *Vibrio fischeri*. Dilution series in Test K were prepared with dilution saltwater (2 % NaCl) provided from HACH-LANGE.

Color for Test H was prepared as a dark brown mixture of 50 mg/L Tartrazine, 50 mg/L New coccine and 6.7 mg/L Lissamine Green B, which are dyes representing the yellow, red and green color spectrum, respectively. The color mixture was tested to be non-toxic at concentration up to 25 % color mixture. Test H was performed with concentrations of color mixture of 0.2 (not visible), 6.25 and 12.5 % color mixture. Pictures of the colors in double concentration 0.4, 12.5 and 25 %¹ are shown in Appendix 6.

The turbid mixture used in Test L was prepared with $BaSO_4$. A $BaSO_4$ solution of 0.2 g/L was tested non-toxic. The turbidity robustness test was performed with concentrations of $BaSO_4$ of 0.05 g/L, 0.1 g/L and 0.2 g/L. Pictures of the turbid solutions in double concentration 0.1, 0.2 and 0.4 g/L are shown in Appendix 6. The toxicity of $BaSO_4$ was screened on samples centrifuged and filtered as prescribed in the ISO 11348-3.

The LUMISsoft4 PC software calculates EC_{50} -values as an overall result of the testing of a dilution series according to the ISO 11348-3. When a certain test concentration gives 0 % or 100 % inhibition, the result cannot be used in the determination of EC_{50} . Usually only results between 10 % and 90 % inhibition are used in the calculation of EC_{50} per ISO11348-3. For compounds not previously tested it was therefore necessary to perform a range finding test to determine concentrations which would give inhibitions within the range of 10 % to 90 %. The software requires a minimum of three values between 10 % and 90 % to calculate the EC_{50} .

¹ When testing is performed bacteria suspension is added and concentrations are the half.

The principle of the dilution series in the thermostat is shown in Figure 3.1. The rows B and C contain the two measurement replicates included in all tests where the thermostat was used. When performing the test, the added bacterial suspension was doubling the volume. The final dilution series were therefore: control, 32, 24, 16, 12, 8, 6, 4, 3 and 2 times dilution.

Figure 3.1 LUMIStherm thermostat and dilution series.

Test J and K were performed on effluent industrial and domestic wastewater. The toxicity (as indicated by inhibition) of types of wastewater was determined prior to their use. If the wastewater had been toxic, it would have been diluted with 2 % NaCl MilliQ water to a non-toxic concentration, and then spiked with the selected compounds. The two wastewater types, tested in Test K, were not toxic and they were, therefore, used without any dilution.

For field portability (Test E), the ECLOX without the LUMISsoft4 software was used (i.e., no PC is taken along). The firmware only shows readings of % inhibition. The goal of this test was to assess how stable individual inhibition measurements were at three different temperatures; a controlled 5° C, 15° C and ambient room temperature. Concentrations generating three inhibitions (20 %, 50 % and 80 %) were measured at each temperature to give a sense of variability over a range of inhibitions in temperatures that might be encountered in real-world field testing.

3.2.2 Test staff

The test responsible was Claus Jørgensen, and the test technicians were Jane Bergstrøm and Connie Seierø.

3.2.3 Type and number of samples

The types and number of samples are summarized in Table 3.3.

Test No.	Performance parameters	Measuremer samples	nts of	Measurements of blanks and refer- ence standards			
		LUMIStox	ECLOX	LUMIStox	ECLOX		
А	Range	396	396	44	44		
	Repeatability						
	Agreement with accepted values						
В	Criterion of detection			10	10		
С	Robustness, initial concentration	96	96	12	12		
D	Reproducibility	162	171	18	19		
Е	Repeatability, field		54		18		
F	Robustness, sample temperature	18	18	18	18		
G	Robustness, pH	18	18	6	6		
Н	Robustness, color	42	42	6	6		
1	Robustness, turbidity	56	56	8	8		
J	Robustness, matrix	132	132	12	12		
К	Robustness, matrix	90	72	10	8		
L	Robustness, cuvettes	36		12			
Total		1046	1055	156	161		

Table 3.3 Number of measurements of samples and blanks.

3.2.4 Operation conditions

The operation conditions applied during the verification of the product were generally as required in ISO 11348-3. EC-values were determined for exposure times of 15 and 30 minutes.

When using the ECLOX in the field, it is possible to fulfill the requirements in the ISO 11348-3 on adjustment of pH and salinity, and settling of turbid samples; however, it is not possible to adjust the temperature of the testing samples. Therefore a test (Test E) on variation in sampling temperatures (indoor and outdoor during the Danish winter period) was included.

3.2.5 Operation measurements

During operation, the following conditions were recorded, when relevant:

- Conductivity/salinity of stock solutions.
- pH of stock solutions.
- Temperature in the thermostat was controlled daily.

Salinity and pH were adjusted if required according to ISO 11348-3.

The vendor has experienced that cyanide is difficult to handle. Therefore, a determination of the concentration of cyanide in the dilutions was performed with a test kit. An artificial cyanide sample was carried through the entire test procedure. Instead of adding bacteria solution 2 % NaCl was added. No measurements of luminescence were performed but the concentration of cyanide was analyzed using a HACH-LANGE test kit (LCK 315). Test row B was analyzed at time 0 and test row C was analyzed after 30 minutes. The LCK 315 from HACH-LANGE, uses a barbituric acid-pyridine method and has a range of measurement from 0.01-0.6 mg/L.

The results showed that cyanide was stable during that test i.e. the concentration after 30 minutes was within the acceptable range of 80-120 % of the initial concentrations. Cyanide was therefore included in the test program.

3.2.6 Product maintenance

The following storage information for the bacteria was provided by the vendor:

• The test reagents must be stored at -18°C until the date of expiry. Reactivated bacteria should be used within 4 hours if possible. Undiluted, reactivated bacteria should be placed only temporarily in a refrigerator. The sensitivity spectrum of reactivated bacteria may shift as time elapses. Tubes containing thawed but not reactivated freeze-dried luminescent bacteria can be refrozen.

For the LUMIStox the vendor provided the following information on product maintenance and optimal performance:

- The system diskette must be inserted into the drive before the instrument is switched on! Whenever the instrument is moved, the diskette must be removed from the drive first.
- The LUMIStox 300 measuring instrument should not be operated in an ambient temperature below 16°C or above 29°C, otherwise problems may occur with the cooling of the measuring shaft. Do not operate the instrument in direct sunlight!
- Soiling impairs the functioning of the cuvette lowering system. For this reason, do not pipette reagents into measuring cuvettes in the measuring shaft. The measuring shaft should also be closed in the <exit > mode when the measurements have been completed. When the LUMIStox 300 is in use, the measuring shaft is automatically closed after a 10-minute idle period. It can be opened again by pressing any key.
- Before any measurements the LUMIStox 300 must have been switched on for at least 30 minutes so that the photomultiplier and the cooled components are ready for operation.

For the ECLOX the vendor provided the following information on product maintenance and optimal performance:

- All cleaning and maintenance of the ECLOXTM Water Test Kit is to be performed in a suitable clean, dry area. Make sure the kit is clean before removing any access or battery covers. Do not permit foreign material to enter the kits as this can cause equipment damage.
- The ECLOX Water Test Kit is designed for field use. No routine maintenance is required, provided all cleaning, test, and calibration procedures are followed.
- The luminometer must be kept clean at all times. If the surface is dirty, wipe it down with a clean damp cloth. Do not let water get into the luminometer cell. If water gets into the cell, remove the cell insert and wipe out the moisture with a clean, dry cloth. Replace the cell insert.

• When replacing the battery a special procedure described in the manual must be followed.

3.2.7 Health, safety and wastes

The use of the product does not imply special health, safety and waste issues.

Laboratory work during testing was performed according to the DHI Safety Rules that are compliant with the Danish rules for safe occupational health and the European regulations of work with chemicals. The test substances were handled carefully in accordance with material datasheets of the test substances. Wastewater was handled according to DHI's safety rules.

Chemicals and test solutions were discarded according to Danish regulations for chemical waste by collection and destruction, *in casu* by collection and shipment to controlled destruction when required.

4 REFERENCE TESTS AND ANALYSIS

The true value of a toxicity test cannot be determined, since no bacteria vials are fully identical, and are prepared slightly differently from vendor to vendor. Therefore, the test results will react slightly differently in every test. According to ISO 11348-3, the true or accepted EC_{50} -value of a substance is obtained, as long as the criteria in the ISO are met. The reference tests were not planned to be used as true values as seen in other verifications, but to be used to give an indication of the sensitivity of the test organisms and as help in identifying false negative tests performed with the LUMIStox or ECLOX equipment.

Luminescent bacteria reference tests were intended to be done under ISO 17025 accreditation, using the ISO 11348-3 Luminescent bacteria test method, with Microtox[®] equipment. The analytical laboratory chosen to perform the reference test turned out to not fully capable or equipped to fulfill the requirements of the ISO 11348-3, but instead used a modified method. It was investigated if the tests could be performed elsewhere fulfilling both the ISO 11348-3 and the accreditation requirement as well as operating different equipment than the LUMIStox (or ECLOX). A laboratory meeting these criteria could not be found, and it was decided to exclude further reference tests.

The originally plan was reference tests should be done by an external laboratory, ALcontrol, on the following selected samples:

- Test A: samples with the initial concentration for all target compounds tested (except cyanide). 3 replicates will be performed for one compound.
- Test K: samples of one spiked, non-inhibiting domestic wastewater and one spiked, non-inhibiting industrial wastewater. 3 replicates will be performed for one of the wastewater samples.

After test of three samples: pure 2 % NaCl MilliQ water and 2 % NaCl MilliQ water spiked with SDS and zinc, respectively, it was noticed that the results obtained from the samples with zinc differed remarkable from the results of the Zn^{2+} reference standard listed in ISO 11348-3.

The laboratory, ALcontrol, was therefore asked to provide details of their test procedures. There were several deviations from the ISO 11348-3:

- Test reference standards used were from the bacteria supplier and were not in accordance with the ISO
- The ISO specifies that a sodium, magnesium and potassium solution shall be used for dissolving the bacteria. Instead was used a sodium solution with addition of magnesium.
- Dilution series were not prepared as stated in the ISO and replicate test of each cuvette, as specified in the ISO, were not performed.

When ISO reference standards were not tested as specified, it is not possible to determine if the test if valid according to section 11 of the ISO 11348-3.

The lack of use of the sodium, magnesium and potassium solution for dissolving the bacteria will affect the toxicity of chemicals. According to vendor a solution with only sodium will result in higher toxicity (lower EC_{50} -values) for zinc and lower toxicity (higher EC_{50} -values) for chromium.

Due to the above conditions only the results of the test with the 2 % NaCl MilliQ water were applied in this report.

With the aim to confirm test concentrations subsamples of test stock solutions were sent to an independent laboratory for chemical analysis under ISO 17025 accreditation /5/. The stock solutions were made in a 2 % NaCl solution to ensure same conditions as in the luminescent bacteria test. The stock solutions were prepared on the day of use and usually subsamples were shipped and received on the chemical laboratory on the same day. However $K_2Cr_2O_7$ samples were received on the laboratory the following day and CuSO₄ and ZnSO₄ samples, 5 and 6 days after preparation respectively. Samples of stock solution for analysis were taken at the start of the toxicity testing.

4.1 Analytical laboratory

Reference test of toxicity was performed by ALcontrol AB, Olaus Magnus väg 27, S-583 30 Linköping, Sweden. SWEDAC accreditation registry number 1006.

Contact Britt Aurell, email: britt.aurell@alcontrol.se, phone: +46 13-254987

Chemical analyses of stock solutions were performed by Eurofins Danmark A/S, Ladelundvej 85, 6600 Vejen, Denmark. DANAK accreditation registry number 168.

Contact Vivi Handberg, email: vivihandberg@eurofins.dk, +45 70 22 42 66.

4.2 Analytical parameters

Samples were tested with $Microtox^{(B)}$, results were given as EC_{20} - and EC_{50} -values in % of solution.

All stock solutions were analyzed for the concentration of the added compound.

The wastewater samples were analyzed for general wastewater parameters as listed in Table 4.1.

Table 4.1 Analytical parameters for wastewater.

Analytical parameters						
Turbidity	COD					
TOC	Suspended solids (SS)					
Conductivity	Nitrogen (total)					
Alkalinity	Phosphorus (total)					
рН	BOD₅					

4.3 Methods of test and analysis

The reference test method was a Luminescent bacteria test method. The equipment from Microtox[®] was used. ALcontrol performs regular tests for zinc sulphate and phenol and compare them with specified intervals from the bacteria supplier. These test results were available for review. ALcontrol has also participated in one interlaboratory trial, from which results were available for review at the audit performed by Battelle.

Stock solutions were analyzed according to the methods listed in Table 4.2, while wastewater parameters were analyzed according to methods listed in Table 4.3.

Group	Compound	Method	Limit of detection	Uncertainty
	-		µg/i	%
Heavy	Cr	ISO 17294m - ICP-MS	1.0	15 '
metals	Zn	ISO 17294m - ICP-MS	0.5	10 ¹
Organic pollutants	Triclosan ²	-	-	-
Industrial pollutants	Cyanide (CN ⁻)	DS/EN ISO14403	1	10
Surfactants	SDS (sodium lauryl sulphate)	DS 237	25	15
	CTAB (cetyl trimethyl ammonium bromide) ³	VKI method	100	20

Table 4.2Analytical methods and general performance from the contracted laboratory.

¹ Eurofins states that salt content in samples can give higher RSD.

² The inclusion of triclosan in wastewater analyses is relatively new. Triclosan was set up by Eurofins in December 2009. This method is therefore not included under Eurofins accreditation.

³ CTAB was analysed with a general method for cationic detergents. The method is calibrated with benzyl dimethyl tetradecyl ammonium chloride-dihydrate. The concentration of CTAB was calculated based on the mole weight of the two compounds.

Table 4.3Method for parameters analyzed in wastewater.

Parameters	Method	Parameter	Method
Turbidity	DS 290	COD	ISO 15705
TOC	DS/EN 1484	Suspended solids (SS)	DS/EN 872
Conductivity	DS/EN 27888	Nitrogen (total)	DSENI 11905 Auto
Alkalinity	DS/EN I 9963	Phosphorus (total)	DS/EN ISO 6878
рН	DS 287	BOD ₅	DS/EN 01899-1

For analyses performed under accreditation, internal and external quality control data have been available from Eurofins.

4.4 Analytical performance requirements

The analytical performance requirement for the reference test performed with Microtox® is equal to performance parameters as derived for LUMIStox and ECLOX, summarised in Table 4.4. The available quality control data from ALcontrol, as described in Section 4.3, did not give information on the performance parameters.

Table 4.4	Reauired	analvtical	performance.
	rioquirou	analytical	pononnanoo.

	Criterion of de- tection % inhibition	Precision (RSD)%	Agreement with accepted values %	Robustness %
Microtox®	< 10	< 30	100 <u>±</u> 50	100±50

4.5 Preservation and storage of reference samples

Samples for Microtox[®] testing were frozen until shipment according to instructions from the ALcontrol.

Stock solutions for chemical analyses were preserved according to instructions of Eurofins. Wastewater samples were stored at 5°C. The samples were shipped on ice and transported by a refrigerated van.

5 DATA MANAGEMENT

Data filing and archiving followed the procedures of the DHI Quality Management System, which specifies that all project material is to be filed after the project has been completed. The project material comprises all documents, calculations, analyses, results, etc. that will enable another DHI employee to scrutinize the work carried out. After 10 years, the project files should still be sufficiently complete to make possible a reconstruction of the work.

5.1 Data storage, transfer and control

The types of data compiled and stored are summarized in Table 5.1.

Analytical raw data for stock solution verification and wastewater parameters from Eurofins were filed and archived according to the specifications of their laboratory quality management systems under their ISO 17025 accreditation.

Data type	Data media	Data recorder	Data recording timing	Data storage
Test plan and	Protected PDF	Test responsi-	When approved	Files and ar-
report	files	ble, DHI		chives at DHI

Table 5.1Data compilation and storage summary.

Data type	Data media	Data recorder	Data recording timing	Data storage
Test details in laboratory and field	Log book and pre-prepared forms	Technician, DHI	During collec- tion	Files and ar- chives at DHI
Calculations	Excel files	Test responsi- ble, DHI	During calcula- tions	Files and ar- chives at DHI
Analytical re- ports	Paper	Test responsi- ble, DHI	When received	Files and ar- chives at DHI

Forms for data recording are given in Appendix 6 in the test plan /14/. Records were made for tests after 15 and 30 minutes of exposure.

6 QUALITY ASSURANCE

The tests were performed under the quality management system of DHI which is ISO 9001 compliant /7/, but not certified. The DHI laboratories have ISO 17025 accreditations /5/ and OECD GLP approvals /8/ for a range of tests and ISO 17025 for sampling of drinking water. As part of the ISO 17025 and GLP inspections, the procedures for general laboratory processes, quality assurance and documentation/archiving are assessed.

6.1 Test plan review

The test plan has been subject to internal review by the verification responsible from DHI DANETV Water Centre: Head of Innovation Margrethe Winther-Nielsen. The test plan has also been subject to review by the Battelle Advanced Monitoring Systems Center Verification Test Coordinator and Quality Manager (Mary Schrock and Zachary Willenberg, respectively), as well as by the U.S. EPA ETV AMS project officer and quality manager (John McKernan and Michelle Henderson, respectively). Furthermore, the test plan has been subject to review by ETV Canada by Director Technology Assessment and Quality Assurance Services Mona El-Hallak.

External review of the test plan has been done by the expert group assigned to this verification.

6.2 Performance control – reference test and analysis

Generally, our control of reference test and analysis has been based on laboratories performing analyses under ISO 17025 accreditation /5/. Information on the laboratory quality assurance has been gathered. Physical inspection (audit) was only planned to be performed if disagreements were suspected. This was not the case with regards to Eurofins and physical inspection there has not been performed by DHI. Battelle audited ALcontrol and differences in method noted. Upon examining of first test results the difference noticed at the audit led to further investigations and ended with eliminating the Microtox[®] at ALontrol as reference test.

Performance control of ALontrol Microtox® tests has not been performed due to decision on not perform test as planned. Information of the laboratory quality assurance, method validation, etc. has been evaluated at the Battelle TSA audit. Further result from testing of standards done in addition to testing of samples has been gathered.

Performance control of Eurofins analysis was performed by sending 2 blanks (2 % NaCl MilliQ water) to analyses for each of the target compounds. Information of the laboratory quality assurance, proficiency test, etc. has been gathered. Eurofins includes standard reference samples when they analyze. Details on their acceptance range and action if standard is out of acceptance range are given in Table 6.1.

Group	Compound	Method	Acceptance criteria	Action
Heavy metals	Cr	Use of NIST standard 1643d	1.79-2.42 µg/L	If control is not within acceptance
	Zn		6.5-8.8 µg/L	criteria the series will be reanalyzed
Organic pollutants	Triclosan	Use of standards prepared from pure chemicals from difference batches and sup- pliers. A standard	The results for standard near LoD have to be convincing.	Performance on the apparatus will be improved and the samples rean- alyzed.
		concentration near LoD is included as well as a high standard concen- tration	Result of the samples has to be below concentra- tion in the high standard	Either reextraction with less sample material in use or the first extract will be diluted
Industrial pollu- tants	Cyanide (CN`)	Include standards of NaCN: 5 µg/l and 50 µg/l. And K3(Fe(CN)6): 10 µg/l and 100 µg/l. Replicate on every 20. sam- ples and mini- mum per series	For NaCN: 4,45-5,55 μg/l and 44,5-55,5 μg/l. For K ₃ (Fe(CN) ₆): > 9,0 μg/l and >90 μg/l. Accepted differ- ence < 18%	If controls are not within ac- ceptance crite- ria the series will be reana- lyzed
Surfactants	SDS (sodium lau- ryl sulphate)	As for triclosan. As standard is used SDS	The results for standard near LoD have to be con- vincing Result of the sam- ples has to be below concentra- tion in the high standard	Performance on the apparatus will be improved and the samples re- ana-lyzed. Either reextraction with less sample material in use or the first extract will be diluted.
				If retrieval is not with acceptance

Table 6.1Eurofins reference standards and acceptance criteria.

Group	Compound	Method	Acceptance criteria	Action
		Further is also in- cluded quality con- trol performed by spiking a sample and calculate re- trieval	70-120 %	criteria sample and spiked sam- ple are reanalyzed
Surfactants	CTAB (cetyl trime- thyl ammonium bromide)	Include standards of Benzyl- dimethyltetra ammoniumchlorid dihydrat: 0,3 mg/l and 1,5 mg/l.	0,11-0,49 mg/l and 0,9-2,10 mg/L.	If controls are not within ac- ceptance crite- ria the series will be reana- lyzed
		Replicate on every 20. sam- ples and mini- mum per series	Accepted differ- ence < 18 %	

Performance evaluation (PE) audits have been considered, but the gathered quality control data from Eurofins did not show any need for PE-audit.

6.3 Test system control

System control was used to test the DHI DANETV Water Centre test system of the LUMIStox and ECLOX.

All stock solutions were analyzed in duplicate to confirm the concentration of target compounds. Before testing with luminometers solid NaCl salt was added to the samples. Therefore, solid NaCL was also added to the samples sent for reference analysis.

Luminescent bacteria test of 1 blank sample was performed at ALcontrol to ensure that no toxic sources of contamination are present in MilliQ water used for preparation of stock solutions. The blank sample was also used for control of ALcontrol Microtox® test. The blank sample was found to be non-toxic.

According to ISO 11348-3 three reference substances shall be tested for each batch of bacteria. These tests were performed solely on the LUMIStox equipment at DHI. The testing of the batches is related to the bacteria and not to the equipment, therefore tests on one instrument were considered sufficient.

An overview of the reference performance control, described in Section 6.2, and the DHI DANETV Water Centre test system, described in this section, is given in Table 6.2. The results of the test quality assurance are given in Section 7.3

Information/control type	Reference laboratory	DHI Test laboratory	
Blank samples	Detection limit	Quality of MilliQ water	
Reference test according to ISO 11348-3	-	Test of bacteria batches	
Control, stock solutions	Precision	-	
Wastewater	Precision	-	
Quality control	Precision	-	
Proficiency test	Trueness	-	

 Table 6.2
 Summary of reference performance control and test system control.

6.4 Data integrity check procedures

All transfer of data from printed media to digital form as well as manual transfer from one program to another was checked.

6.5 Test system audits

An internal audit by DHI, following the GLP audit procedures by a trained auditor, was performed (see the verification protocol for details).

The Battelle Quality Manager, Zachary Willenberg, performed a technical systems audit (TSA) during this verification and test. The purpose of this audit was to ensure that the verification test was performed in accordance with the AMS Center quality management plan /9/, the test plan /14/, published reference methods and any methods used in the tests. In the TSA, the Battelle Quality Manager reviewed the reference methods used and compared actual test procedures to those specified or referenced in the plan. In the TSA, the Battelle Quality Manager was observing testing in progress, inspecting documentation, and reviewing technology-specific record books. He also checked standard certifications. A TSA report was prepared /14/, including a statement of findings and the corrective actions taken. The AMS Center Quality Manager, the U.S. EPA Quality Manger and the DHI DANETV Water Centre Verification Responsible received a copy of Battelle's TSA report. The TSA findings were communicated to technical staff at the time of the audit and documented in the TSA report.

The Battelle Quality Manager, or designee and the ETV Canada Quality Manager, performed an audit of data quality. This was a review of data acquisition and handling procedures and an audit of at least 10 % of the data acquired in the test and verification. The Quality Managers traced the data from initial acquisition, through reduction and statistical comparisons, to final reporting. All calculations performed on the data undergoing the audit were checked.

6.6 Test report review

The test report has been subject to internal review by the verification responsible from DHI DANETV Water Centre: Head of Innovation Margrethe Winther-Nielsen.

Mona El-Hallak (MEH) from ETV Canada has reviewed the test report.

External review of the test report was done by Associate Professor Kresten Ole Kusk.

7 TEST RESULTS

This test report follows the template of the DHI DANETV verification center quality manual $/10/\!$

For this joint verification, the principles (contents) of the U.S. EPA ETV and ETV Canada format have been complied with as well.

One joint test report is prepared for LUMIStox and ECLOX.

7.1 Test data summary

The test results are summarized below and presented according to the performance parameters investigated. For complete descriptions of the raw data collected and calculations used in reporting, the reader is referred to the test design in Section 3, the raw data in Appendix 6 and the calculations in Section 8.1 in the verification report /16/. The Excel sheets containing the actual calculations are archived at DHI.

7.1.1 Criterion of detection

The criterion of detection was calculated based on the results from Test B, where series of 9 samples including bacteria, but no toxic compounds, were tested. The criterion of detection for LUMIStox and ECLOX after 15 and 30 minutes exposure respectively, is given in Table 7.1.

 Table 7.1
 Criterion on detection (% inhibition). Number of replicates (n) is 3.

Test time	LUMIStox	ECLOX
15 minutes	6.7	7.5
30 minutes	5.8	5.5

7.1.2 Range of application

Range of application in this context means the concentration range where (pure water) samples can be tested without dilution or pre-concentration.

The range of application was based on the results from Test A, where EC_{50} values were determined for 6 target compounds.

To be able to determine the EC_{50} -value, an initial concentration just above 2* EC_{50} is needed, since the standard procedure is to dilute the sample to half the initial concentration before testing. Without extraordinary dilution of the sample, the EC_{50} -value has to be detected within the regular dilution series containing 9 dilutions (limitation by the thermoblock). The maximum concentration in the sample can therefore be just less than $32*EC_{50}$. The compound specific ranges of application are listed in Table 7.2 and Table 7.3 together with the average EC_{50} -values.

Table 7.2	LUMIStox range of application in 2 % NaCl MilliQ water for target compounds (mg/L).
	Number of replicates (n) is 3 but 4 for cyanide.

LUMIStox	15 minutes				30 minutes	
Compound	Average EC ₅₀ (mg/L)	Range of application (mg/L)		Average EC ₅₀ (mg/L)	Range of a (mg	pplication I/L)
		Minimum	Maximum		Minimum	Maximum
Zn ²⁺	8.5	>17	<270	4.1	>8.3	<130
$Cr_2O_7^{2-}$	n.c. ¹	-	-	17	>35	<560
Triclosan ³	0.40	>0.79	<13	0.53	>1.1	<17
Cyanide	24 ²	>48	<70	24	>48	<780
SDS ³	1.4	>2.8	<44	1.0	>2.0	<32
CTAB ³	1.3	>2.7	<43	0.97	>1.9	<31

n.c.: Not calculated.

 1 EC₅₀ for Cr₂O₇²⁻ was not possible to calculate after 15 minutes. The requirement of one measurement above 50% inhibition was not fulfilled.

 2 EC₅₀ for cyanide was only possible to calculate after 15 minutes for two out of four replicates. The requirement of one measurement above 50% inhibition was not fulfilled.

³ The recovery of these compounds in mixed solutions was only 2-7 %. The listed EC-values are based on the added amount of compound. See details on recovery later in section 7.3.3.

Table 7.3ECLOX range of application in 2 % NaCl MilliQ water for target compounds (mg/L). Number of replicates (n) is 3 but 4 for cyanide.

ECLOX	15 minutes				30 minutes	
Compound	Average	Range of application		Average	Range of a	pplication
	EC ₅₀	(mg	µ∕L)	EC ₅₀	(mg	g/L)
	(mg/L)			(mg/L)		
		Minimum	Maximum		Minimum	Maximum
Zn ²⁺	8.4	>17	<270	4.1	>8.2	<130
$Cr_2O_7^{2-}$	n.c. ¹	-	-	18	>37	<590
Triclosan ⁴	0.39	>0.77	<12	0.53	>1.1	<17
Cyanide	23 ²	>45	<730	18 ³	>35	<570
SDS ⁴	1.4	>2.8	<45	0.99	>2.0	<32
CTAB ⁴	1.4	>2.9	<46	0.96	>1.9	<31

n.c.: Not calculated.

 1 EC₅₀ for Cr₂O₇²⁻ was not possible to calculate after 15 minutes. The requirement of one measurement above 50% inhibition was not fulfilled.

² EC₅₀ for cyanide was only possible to calculate after 15 minutes for three out of four replicates. The requirement of one measurement above 50% inhibition was not fulfilled.

³ EC₅₀ for cyanide was only possible to calculate after 30 minutes for three out of four replicates. The requirement of one measurement above 50% inhibition was not fulfilled.

⁴ The recovery of these compounds in mixed solutions was only 2-7 %. The listed EC-values are based on the added amount of compound. See details on recovery later in section 7.3.3.

7.1.3 Precision

The precision in terms of repeatability is presented in Table 7.4 and Table 7.5. The repeatability is calculated for the 6 target compounds based on the results from Test A.

LUMIStox	15 m	ninutes	30 minutes		
	EC ₂₀ RSD	EC ₅₀ RSD	EC ₂₀ RSD	EC ₅₀ RSD	
Zn ²⁺	(%)	4.5	(%)	5.0	
$Cr_2O_7^{2-}$	60	n.a.	55	29	
Triclosan	13	7.4	13	5.5	
Cyanide	15	18	73	24	
SDS	33	29	44	33	
CTAB	2.4	3.6	6.3	2.4	

Table 7.4LUMIStox repeatability as relative standard deviation (RSD) in percent. For target compounds in 2 % NaCl MilliQ water. Number of replicates (n) is 3 and 4 for cyanide.

n.a.: Not applicable. EC₅₀ could not be determined.

Table 7.5	ECLOX repeatability as relative standard deviation (RSD) in percent. For target com-
	pounds in 2 % NaCl MilliQ water. Number of replicates (n) is 3 and 4 for cyanide.

ECLOX	15 m	ninutes	30 minutes		
	EC ₂₀ RSD	EC₅₀ RSD	EC ₂₀ RSD	EC₅₀ RSD	
	(%)	(%)	(%)	(%)	
Zn ²⁺	9.3	2.7	14	4.9	
$Cr_2O_7^{2-}$	34	n.a.	30	24	
Triclosan	13	4.6	1.9	2.2	
Cyanide	14	15	40	16	
SDS	40	34	41	38	
CTAB	11	6.3	7.2	1.2	

n.a.: Not applicable. EC₅₀ could not be determined.

The log-log linearity, used by the model for EC-calculation, was relatively low for cyanide, causing high relative standard deviations. More details on cyanide are found in Section 7.2.8.

The precision in terms of reproducibility is presented in Table 7.6. Reproducibility is based on the results from Test D, which was performed with Zn^{2+} as the target compound. EC₅₀-values are closely related to the activity of the bacteria, details on this are described in Section 7.2.7.

Table 7.6LUMIStox and ECLOX reproducibility as relative standard deviation (RSD) in percent for
 Zn^{2+} in 2 % NaCl MilliQ water. Test was performed on three bacteria batches on three dif-
ferent days. Number of replicates (n) is 3, except for ECLOX, batch 02099 where 4 repli-
cates were tested.

Zn ²⁺	15 m	ninutes	30 minutes		
	EC ₂₀ EC ₅₀ RSD RSD		EC ₂₀ RSD	EC₅₀ RSD	
	(%)	(%)	(%)	(%)	
LUMIStox	22	28	36	30	
ECLOX	46	63	55	51	

7.1.4 Agreement with accepted values

The agreement of the test result (EC_{50}) with an average accepted EC_{50} -value of substance i (A_i) has been calculated for each target compound and expressed in percentage of the accepted average value. The LUMIStox and ECLOX EC_{50} values were obtained from Test A. The sources of accepted literature EC_{50} values obtained with the ISO 11348-3 method are listed with references in the Verification Protocol, Appendix 3 /1/. The average agreement was determined for all compounds which had literature values were it was known that the test was performed according to the ISO 11348-3.

Compound	Ac	LUMIStox			
	EC₅₀ (mg/L)	Test time	According to ISO 11348-3	EC ₅₀ (mg/L)	A i (%)
Zn ²⁺ (ZnSO₄·7H₂O)	2.2 mg/l ± 23 %	30 min	Yes	4.1 ± 5.0 %	186
$Cr_2O_7^{2-}$ (K ₂ Cr ₂ O ₇)	18.7 mg/L ±11 %	30 min	Yes	17 ± 29 %	91
Triclosan	0.28	15 min	Yes	0.40 ± 7.4 %	143
	0.28	30 min	Yes	0.53 ± 5.5 %	189
CTAB	0.97	30 min	Yes	0.97 ± 2.4 %	100

 Table 7.7
 LUMIStox EC₅₀ agreement with accepted values (A) in percent.

Table 7.8 ECLOX EC₅₀ agreement with accepted values (A) in percent.

Compound	Aco	cepted valu	es	ECLOX	
	EC₅₀ (mg/L)	Test time	According to ISO 11348-3	EC₅₀ (mg/L)	A i (%)
Zn ²⁺	2.2 mg/l ± 23 %	30 min	Yes	4.1 ± 4.9 %	186
(ZnSO ₄ ·7H ₂ O)					
$Cr_2O_7^{2-}$	18.7 mg/L ± 11 %	30 min	Yes	18 ± 24 %	96
$(K_2Cr_2O_7)$					
Triclosan	0.28	15 min	Yes	0.39 ± 4.6 %	139
	0.28	30 min	Yes	0.53 ± 2.2 %	190
CTAB	0.97	30 min	Yes	0.96 ± 1.2 %	99

When evaluating the agreement with accepted values it should be taken into account that bacterial activity for some compounds affects the EC_{50} -values. It has been shown that a low bacterial sensitivity, indicated by a low inhibition by the Zn^{2+} standard, results in a higher EC_{50} . For Test A the activity of the bacteria caused an inhibition of approximately 25 % for the Zn^{2+} standard in a concentration which should equal EC_{50} according to the ISO 11348-3 method. The inhibition was therefore half of what could be expected from the EC_{50} -value, but still within the accepted range from 20-50 % inhibition which is the acceptable range in the ISO 11348-3 method. The concentration needed in Test A to obtain 50 % inhibition was, due to the low bacteria activity, a factor of two higher than the EC_{50} -value listed in the ISO 11348-3 and resulted in an agreement with accepted value (A_{Zn}^{2+}) of 186 %.

7.1.5 Robustness

Initial concentration, temperature, pH, color, turbidity and type of cuvettes

The robustness of the LUMIStox and ECLOX measurements was tested against differences in initial concentration, temperature, pH, color, turbidity and type of cuvettes. The robustness was calculated as the average measurement under conditions of the robustness test divided by average measurement under reference conditions, and reported as a percent. The results of the robustness test are both EC-values (Test C) and % inhibition (all other robustness tests). The robustness under different test conditions is listed in Table 7.9 to Table 7.12. The tables specify the test name (Test C to L) as well as the target compound used in the test.

For the tests with color and turbidity (Test H and I) three different concentrations of each color or turbid $BaSO_4$ -reagent were used. Pictures have been taken to show the difference in color and turbidity. They are included in Appendix 6 along with the test results.

Table 7.9LUMIStox robustness (R) in percent. Test results are presented as EC-values. R values
significantly different (95 % confidence level, two-sided t-test) from 100 % indicated in
bold.

LUMIStox	Test Target compound		Condition	15 min		30 min	
		_		EC ₂₀	EC ₅₀	EC ₂₀	EC ₅₀
				R	R	R	R
				(%)	(%)	(%)	(%)
Initial concentration Ref. ~EC ₉₀	С	SDS	Initial con- centration ~EC ₃₀	103	n.a.	104	n.a.
			Initial con- centration ~EC ₆₀	78	93	86	96

n.a.: Not applicable.

Table 7.10LUMIStox robustness (R) in percent. Test results are presented as % inhibition. R values
significantly different (95 % confidence level, two-sided t-test) from 100 % indicated in
bold.

LUMIStox	Test	Target	Condition	15 min R	30 min R
		compound		(%)	(%)
Temperature, lab	F	SDS	14.0°C	99	105
Ref.15.4°C			16.1°C	69	71
рН	G	SDS	6.0	96	110
Ref. 7.0			8.5	101	107
Color	Н	SDS	0.2 % dye,	94	102
Ref. no color			with c.c.		
			0.2 % dye,	98	105
			without c.c.		
			6.25 % dye,	108	107
			with c.c.		
			6.25 % dye,	170	156
			without c.c.		
			12.5 % dye,	117	114
			with c.c.		
			12.5 % dye,	220	197
			without c.c.		
Turbidity	I	SDS	0.05 g BaSO₄/L,	55	70
Ref. no turbidity			with c.c.		
			0.05 g BaSO ₄ /L,	112	106
			without c.c.		
			0.10 g BaSO ₄ /L,	8	41
			with c.c.		
			0.10 g BaSO₄/L,	105	97
			without c.c.		

LUMIStox	Test	Target compound	Condition	15 min R (%)	30 min R (%)
			0.20 g BaSO₄/L, with c.c.	-90 ²	-20 ²
			0.20 g BaSO₄/L, without c.c.	97	88
Cuvette material ¹	L	Zn ²⁺	Plastic	101 (99-160)	107 (106-117)
Ref. glass		SDS	Plastic	108 (93-108)	99 (90-101)

c.c.: Color correction.

¹ Test performed in triplicates (with 3 replicates in each test). Median and interval are given as result.

² Negative values occur when there inhibition is negative. Negative inhibition means that the solution tested gives better growth conditions for the bacteria than the control.

Table 7.11ECLOX robustness (R) in percent. Test results are presented as EC-values. R values sig-
nificantly different (95 % confidence level, two-sided t-test) from 100 % indicated in bold.

ECLOX	Test	Target compound	Condition	15 min		30	min
				EC ₂₀	EC ₅₀	EC ₂₀	EC ₅₀
				R	R	R	R
				(%)	(%)	(%)	(%)
Initial concentration Ref. ~EC ₉₀	С	SDS	Initial con- centration ~EC ₃₀	101	n.a.	125	n.a.
			Initial con- centration ~EC ₆₀	93	94	91	97

n.a.: Not applicable.

Table 7.12ECLOX robustness (R) in percent. Test results are presented as % inhibition .R values
significantly different (95 % confidence level, two-sided t-test) from 100 % indicated in
bold. Number of replicates are 3, except for Test I on turbidity were the number of repli-
cates are 4.

ECLOX	Test	Target compound	Condition	15 min R (%)	30 min R (%)
Temperature, field ¹	E	Zn ²⁺	5°C	27 (11-35)	n.a.
Ref. 16°C			23°C	116 (108-171)	n.a.
		SDS	5°C	100 (93-105)	n.a.
			23°C	75 (73-75)	n.a.
Temperature, lab Ref.15.4°C	F	SDS	14.0°C	88	100
			16.1°C	91	85
pH Ref. 7.0	G	SDS	6.0	111	113
			8.5	101	105
Color Ref. no color	Н	H SDS	0.2 % dye, with c.c.	124	124
			0.2 % dye, without c.c.	105	110
			6.25 % dye, with c.c.	107	112
			6.25 % dye, without c.c.	155	148

ECLOX	Test	Target compound	Condition	15 min R (%)	30 min R (%)
			12.5 % dye, with c.c.	128	115
			12.5 % dye, without c.c.	220	180
Turbidity Ref. no turbidity	I SDS	SDS	0.05 g BaSO₄/L, with c.c.	135	111
			0.05 g BaSO₄/L, without c.c.	109	93
			0.10 g BaSO₄/L, with c.c.	154	130
			0.10 g BaSO₄/L, without c.c.	118	107
			0.20 g BaSO₄/L, with c.c.	115	101
			0.20 g BaSO₄/L, without c.c.	92	86

n.a.: Not applicable.

c.c.: Color correction.

¹ Performed at three different concentrations. Median and interval are given as result.

The results show that the use of color correction is essential when testing colored samples (Test H). With color correction robustness of 107-128 % were seen for colored samples (6.25 and 12.5 % dye), while without the color correction the robustness was significantly different from the reference and in the range from 148-220 %. For turbid BaSO₄ samples the use of color correction is unnecessary (Test I) (these sample were not settle or centrifuges as suggested in ISO 11348-3). Without color correction robustness of 86-118 % were seen for turbid samples, while with the color correction the robustness was significantly different from the reference and in the range from -90-154 %. However this may be different for other types of turbid samples.

The use of ECLOX under field temperatures (5°C and 23°C) gave very different results from the reference test at 16°C. The bacterial activity at 5°C was generally very low, resulting in high variation in the results. The test was performed for SDS and zinc. The robustness for the two compounds differs significantly, indicating that the robustness is compound specific.

Wastewater matrix

Adding compounds to a wastewater containing ions, particles etc. may cause some processes such as complexation and adsorbtion to proceed in the wastewater rendering the added compound less toxic (or in some cases more toxic) than the compound in 2 % NaCl MilliQ water.

The effect on difference in matrix has also been tested (Test J). Two non-toxic wastewater types, respectively an industrial and a domestic wastewater, were used as the matrix and compared to the 2 % NaCl MilliQ water used in other tests.

The baseline luminescence of the non-toxic wastewater differed slightly from the baseline of the 2 % NaCl MilliQ water, illustrated in Table 7.14. The domestic wastewater appears in this case to enhance the luminescence, which will cause negative inhibition.

Wastewater	LUM	IStox	ECLOX		
	15 min 30 min		15 min	30 min	
	% inhibition	% inhibition	% inhibition	% inhibition	
Industrial	1.2	1.5	-2.9	-3.3	
Domestic	-8.1	-5.7	-6.6	-5.3	

Table 7.13 Wastewater luminescence baseline given as % inhibition. Number of replicates is 3.

Table 7.14 and 1 Negative values occur when there inhibition is negative. Negative inhibition means that the solution tested gives better growth conditions for the bacteria than the control.

Table 7.15 show the robustness towards wastewater. The domestic wastewater is reported both with and without an adjustment to the baseline to account for the waste waters positive effect on the bacteria luminescence (negative inhibition from the wastewater, see Table 7.13).

Table 7.14LUMIStox robustness (R) towards wastewater given in percent. R values significantly different (95 % confidence level, two-sided t-test) from 100 % indicated in bold.

LUMIStox	Target	Wastewater			Adjusted	baseline
	compound and concen-		15 min Inhibition	30 min Inhibition	15 min Inhibition	30 min Inhibition
	tration		R	R	R	R
			(%)	(%)	(%)	(%)
Matrix	Zn ²⁺	Industrial	77	43		
Ref. 2 % NaCl	4.00 mg/L	Domestic	31	84	127	123
MilliQ water	$Cr_2O_7^{2-}$	Industrial	31	0		
	2.80 mg/L	Domestic	-50 ¹	-10 ¹	15	22
	Triclosan	Industrial	114	141		
	0.60 mg/L	Domestic	84	57	105	96
	SDS	Industrial	68	28		
	0.80 mg/L	Domestic	66	64	107	96
	CTAB	Industrial	102	68		
	1.20 mg/L	Domestic	75	52	118	78

¹ Negative values occur when there inhibition is negative. Negative inhibition means that the solution tested gives better growth conditions for the bacteria than the control.

Table 7.15ECLOX robustness (R) towards wastewater given in percent. R values significantly different (95 % confidence level, two-sided t-test) from 100 % indicated in bold.

ECLOX	Target compound	Wastewater			Adjusted	baseline
			15 min Inhibition	30 min Inhibition	15 min Inhibition	30 min Inhibition
			R	R	R	R
			(%)	(%)	(%)	(%)
Matrix	Zn ²⁺	Industrial	56	22		
Ref. 2 % NaCl	4.00 mg/L	Domestic	37	85	132	125
MilliQ water	$Cr_2O_7^{2-}$	Industrial	12	-10 ¹		
	2.80 mg/L	Domestic	-60 ¹	-20 ¹	14	13
	Triclosan	Industrial	116	141		
	0.60 mg/L	Domestic	89	62	110	101
	SDS	Industrial	68	35		
	0.80 mg/L	Domestic	71	67	111	101
	CTAB	Industrial	99	61		
	1.20 mg/L	Domestic	64	49	101	73

¹ Negative values occur when there inhibition is negative. Negative inhibition means that the solution tested gives better growth conditions for the bacteria than the control.

Especially chromium shows a change in toxicity when added to the wastewater, but effects are also seen in some cases for zinc, SDS and CTAB.

7.2 Test performance observation

7.2.1 Color correction

Of the tested target compounds only chromium was slightly colored. For the three samples of chromium tested in Test A applying Lumistox with the color correction function in the software, only one of the three replicates changed the measured values and the change in values was very limited.

It is not possible directly to perform color correction on the ECLOX measurements. Instead an additional test with special color correction cuvettes is needed. Due to the very limited color in the test samples it has been chosen not to use color correction for any tests except for the test H and I, were color and turbid material respectively was added to the samples.

7.2.2 Requirements to reference standards and controls

The ISO 11348-3 requests test of reference standards and acceptance of control. Each delivered batch must be checked with three reference substances. This was carried out and results are shown in Table 7.22. Since the references were close to the requirement limits in the ISO one reference (Zn^{2+}) was included in all test runs, instead of as required for each reconstitution. For a few of the Zn-reference standards test results (approximately 10% for measured in the LUMIStox) of did not fulfill the ISO requirement. However, all results have been included in the evaluation, since the general check (reported in Table 7.22) was fulfilling the ISO requirements.

In some cases a low bacterial activity was reflected in the test results (see Section 7.2 for further details). Slightly higher standard deviations were observed and less significantly differences between e.g. robustness parameters.

The ISO also sets limits to the deviation between replicate control samples. Thus parallel determination may not deviate from their mean by more than 3%. HACH-LANGE has informed DHI that for the ECLOX, this can be difficult to fulfill. It does not seem to affect the test results that the controls did not fulfilled the validation criteria of the ISO and no data has been excluded for this reason.

7.2.3 Lifetime of bacteria

HACH-LANGE has specified that the lifetime of the bacteria is four hours after rehydration and the ISO 11348 criteria of validity are met at every time. In few cases older bacteria has been used as specified in the results included in Appendix 6.

The activity of the bacteria decreased over time in some of the tests (e.g. Test G on change in pH). The requirements for the Zn^{2+} reference standard could not be fulfilled at the end of the test, even though the bacteria were not more than four hours old. The opposite was also seen (e.g. Test D). Here the requirement to the Zn^{2+} reference standard was not fulfilled during the tests performed within the four hours time frame, but it was fulfilled for an additional replicate performed on bacteria older than four hours.

7.2.4 Software

There have been a few incidents were the software has caused a difficulties during the testing.

In one incident the software was operating during the test, but it did not save the data. The actual test i.e. three replicates had to be repeated another day.

The software works well for estimation of EC-values according to the ISO-standard, but when applying different set-up and dilutions others than the standards, problems sometimes arrose. As example, it was not possible to include more than one control and it was not possible to include color correction information obtained with special color correction cuvettes (ECLOX) when there were not enough samples to calculate an EC_{50} -value. The ability to make such changes would have been useful for Test H (color robustness) and Test I (turbidity robustness), where only one test concentration was used.

7.2.5 Target compounds

The original plan was to include 9 target compounds. Three compounds had to be excluded from the test: flutriafol, nonyl phenol ethoxylate (NPE) and copper.

The pesticide flutriafol and the detergent NPE had limited solubility and were not toxic in a saturated solution. That made them not useable in the test system.

Copper, added as $CuSO_4 \cdot 5H_2O$, also had low toxicity in the highest soluable concentration. The chemistry of copper, and thereby also the toxicity, is easily changed in the chosen test system. On one occasion the pH adjustment from a initial pH 6.1 to pH ~7.0 failed. The pH went from 9.3 to 5.2 during the adjustment. The final pH was 6.8. This made the sample very toxic compared to the other replicates. Therefore, copper was not useable in the test system

CTAB was difficult to dissolve and was only used in a limited number of tests. Triclosan had to first be dissolved in ethanol and thereafter in water. Ethanol concentration in the artificial sample and the control was 100 μ L/L, and found not to be toxic.

7.2.6 Bacteria activity and quantities of bacteria batches

The activity of the batch 02099 did not fulfill the requirements of the ISO standard for % inhibition on Zn^{2+} and $Cr_2O_7^{2-}$. The batch was therefore only used in a single test (Test D on reproducibility).

Other batches were not immediately available from the vendor. For the same reason the number of tested batches in Test D on reproducibility was three instead of four as originally described in the Test Plan /14/.

7.2.7 Bacteria activity and relation to EC-values

According to the ISO 11348-3, a reference standard must be tested for each reconstitution of a bacteria batch to ensure an acceptable sensitivity of the bacteria. This needs to be done only once for each reconstitution; however, for this evaluation the reference standard was included in each test measurement. A 2.2 mg/l Zn^{2+} reference was used, which must produce an inhibition between 20% and 80%. This requirement was in general met for each reconstitution; however, there was variability in the results of multiple analyses, including some which were below the 20% threshold. The measured EC_{50} appeared to be correlated with the result of the reference standard. This has been analyzed in Figure 7.1, which shows the relationship for the target compound zinc and the Zn^{2+} reference. It is seen that a low inhibition by the Zn^{2+} reference indicates a low sensitivity of the bacteria and consequently gives a higher EC_{50} .

For chromium, which also is included as a reference standard in the ISO method but was not the choice for continuing evaluation of reconstituted bacteria batches for this evaluation, the results for testing are summarized in Table 7.16. The activity of the used bacteria batch from its initial evaluation with chromium as one of the three reference standards is a factor of 1.2 higher than the average in the ISO, while the EC₅₀-values are more or less identical. Since a factor of only 1.2 is not sufficient to state whether there is a difference in activity, it is not possible to determine, whether EC₅₀-values for chromium are related to bacteria activity or not.

Table 7.16Relation between EC_{50} -values for chromium and the activity of the bacteria expressed as
% inhibition of the Cr^{6+} reference standard of 18.7 mg/L. Data are from Test A, performed
on batch 10129 and the ISO-standard.

	EC₅₀ 30 min mg/L	Inhibition of Cr ⁶⁺ reference standard %	
ISO standard	18.7 ±11%	50	
LUMIStox	17	60 + 0.12	
ECLOX	18	60 ± 0.12	

The examples of zinc and chromium show that the bacterial activity and its impact on toxicity measurements is compound-related. This relationship cannot be determined for the other compounds used in this evaluation without more intensive testing.

7.2.8 Log-log linearity

The model used for calculation of EC-values is based on log-log linearity between inhibition expressed as Gamma (see equation 5 in ISO 11348-3) and the concentration. Gamma is 1 at 50 % inhibition. The measurements generally matched the log-log linearity model, but for cyanide this model was often seen not to match. An example is shown in Figure 7.2. In the shown example the model (Gamma lin. reg.) does not fit the measurements (Gamma) at any concentration. The EC₅₀ is estimated by the model to be 19 mg/L, while the measurements indicate the EC₅₀ should be 14 mg/L.

Figure 7.2 Cyanide log-log curve. Test results from Test A on ECLOX, replicate 4 after 15 minutes incubation time.

7.3 Test quality assurance summary

7.3.1 Reference analysis performance data

Control data for the reference analysis obtained from Eurofins are summarized in Table 7.17.

Target compound	Limit of detection	Precision (RSD)	Trueness
	µg/L	%	%
Zn ²⁺	0.50	15	98-99
$Cr_2O_7^{2-}$	0.50	15	103
Triclosan	0.10	Not specified	103
Cyanide (CN ⁻)	1	10	99
SDS (anionic surfactants ¹)	25	15	101
CTAB (cationic surfactants ²)	100	20	95

 Table 7.17
 Performance parameters for reference analysis control data.

¹ Reference compound is SDS.

² Reference compound is Benzyl-dimethyltetra ammoniumchlorid dihydrat, molar weight 404,00 g/mol.

Eurofins has participated in proficiency tests for most of the tested compounds. The results of the latest proficiency tests are shown in Table 7.18.

Parameter	Nominal value	Zeta-score	Supplier	
Zinc	614 µg/L	0.316	APG, November 2009 WS, 1. round	
Chromium	83.1 µg/L	0.157	FAPAS (LEAP), Waste Water, G20+G21	
Triclosan	Eurofins has not participated in proficiency test, since triclosan is a new pa- rameter for them and is not covered by their accreditation			
Cyanide	7.00-11.27 µg/L	0.377	KIWA, drinking water, 09-03	
Anionic	50.0-119.6 µg/L	-0.464	KIWA, drinking water, 09-03	
surfactants				
Cationic	Eurofins is not aware of supplier of proficiency test for cationic surfactants			
surfactants	within the measuring area			

Table 7.18 Results of Eurofins proficiency tests.

7.3.2 Reference test performance data

ALcontrol uses zinc sulfate and phenol as reference standards. Results of the measurements from the day of testing samples from this project are within the specification of the bacteria supplier, though the control chart for zinc shows that over the period the references have been at a low level, around 70% of the expected average.

ALcontrol participates in an annual proficiency test with the Microtox. The results were audited by Battelle as part of the technical systems audit (TSA) at ALcontrol and found to be within the acceptance criteria.

7.3.3 Test system control data Blank samples

The 2% NaCl MilliQ water used to prepare stock solutions of test compounds was analyzed for background levels of these target compounds. The results are shown in Table 7.19. These results also served as a test of the detections limits of the Eurofins laboratory.

The results showed that the 2% NaCl MilliQ water did not contain any of the target compounds in significant concentrations.

Target compound	Concentration µg/L	
	Replicate 1	Replicate 2
Zn ²⁺	<0.50	<0.50
$Cr_{2}O_{7}^{2}$	0.5	0.6
Triclosan	<0.10	0.19
Cyanide (CN ⁻)	<1	<1
SDS (anionic surfactants ¹)	<25	<25
CTAB (cationic surfactants ²)	<100	<100

Table 7.19 Concentrations of target compounds in 2% NaCl MilliQ water (blank) samples.

¹ Reference compound is SDS.

² Reference compound is Benzyl-dimethyltetra ammoniumchlorid dihydrat, molar weight 404,00 g/mol.

The 2% NaCl MilliQ water was tested for toxicity at ALcontrol.

The results are shown in Table 7.20.
Time	EC-value	Concentration
		%
5 minutes	EC ₂₀	78
	EC ₅₀	>82
15 minutes	EC ₂₀	>82
	EC ₅₀	>82
30 minutes	EC ₂₀	>82
	EC ₅₀	>82

Table 7.20 Toxicity in percentage of sample volume of 2% NaCl MilliQ water (blank) samples.

The results showed no significant toxicity of the 2% NaCl MilliQ water.

Control, stock solutions

The concentrations and the stability of the stock solutions were evaluated by sending subsamples of those solutions to Eurofins laboratory. Table 7.21 shows the results of the analysis and the recovery of the concentrations in the stock solutions.

The surfactants SDS and CTAB were expected to adhere to the cuvettes. In addition CTAB was difficult to dissolve. The stock solutions were therefore treated as the test samples (added to cuvettes and left for 30 minutes) before sending to Eurofins, details can be found in Appendix 4, section 11.1.3.

Table 7.21	Concentrations (average and relevant range (high/low value divided by average)) of target
	compounds in spiked 2 % NaCl MilliQ water stock solutions.

Target compound	Measured concentration		Prepared	Recovery
	Average	Relevant	concentration	
		range		
	μg/L	%	µg/L	%
Zn ²⁺	17,500	± 5.7	22,000	80
$Cr_2O_7^{2-}$	52,000	± 7.7	56,100	93
Triclosan	355	± 2.8	1,600	22
Cyanide (CN ⁻)	31,500	± 9.5	32,885	96
SDS (anionic surfactants ¹)	2,550	± 12	35,950	7.1
CTAB (cationic surfactants ²)	725	± 32		
CTAB ³	560	± 32	30,000	1.9

¹ Reference compound is SDS.

² Reference compound is Benzyl-dimethyltetra ammoniumchlorid dihydrat ($(C_6H_5CH_2)(CH_3)_2N(C_{12}C_{14}Alkyl)^+Cl^-$), molar weight 404.00 g/mol. Molar weight of cation 368.5 g/mol.

³ Concentration of CTAB, molar weight 364.45 g/mol has been calculated based on CTAB (cationic surfactants) results. Molar weight of cation 284.5 g/mol.

SDS and CTAB were lost as expected during the testing. The triclosan stock solution also showed a significant loss, with a recovery of only 22 %. These losses were considered when evaluating the EC-values, and a note on this was included in Table 7.2 and Table 7.3. When compared to other EC-values (accepted values) it should be kept in mind, that facilities performing those tests may not have checked the compound recovery, especially not in a set-up as done here for SDS and CTAB.

A determination of the concentration of cyanide in the dilutions was performed with a test kit. An artificial cyanide sample was carried through the test procedure. Instead of adding bacteria solution, 2 % NaCl was added. No measurements of luminescence were performed. Instead the cyanide concentration was measured using a HACH-LANGE test kit (LCK 315). Test row B was analyzed at time 0 and test row C was analyzed after 30 minutes. The results showed that the recovery of cyanide after 30 minutes was from 80-120 % compared to the concentrations at 0 minutes. It was decided that if the loss of cyanide exceeded 20 % the results of the cyanide test would not be included in the verification. Since there was not a loss of more than 20 %, cyanide was included in the test program.

Reference tests according to ISO 11348-3

The bacterial batches used in the tests were tested for compliance with the requirements in the ISO 11348-3, Section 11. For all reference standards the criteria is 20-80 % inhibition. The results of the reference tests are shown in Table 7.22.

 Table 7.22
 Reference tests of bacteria batches performed in accordance with ISO 11348-3. Tests are performed on LUMIStox, number of replicates are two except for Batch 02099 with only one test.

Batch	Zn ²⁺ (2.2 mg/L) %	Cr ₂ O ₇ ²⁻ (18.7 mg/L) %	3,5-dichlorophenol (3.4 mg/L) %
10129	22 ± 0.028	60 ± 0.12	20 ± 2.3
11169	36 ± 0.90	53 ± 1.4	28 ± 0.62
02099	15	96	39
ISO requirement	20-80		

For the batches 10129 and 11169 both Zn^{2+} and especially 3,5-dichlorophenol were close to the lower limit of 20 %, one tested sample was even below 20 % for 3,5-dichlorophenol. It was therefore decided to include the reference standard Zn^{2+} in all tests, to be able to follow the bacteria activity.

The bacteria batch 02099 was only used in one test (Test D), the results for this bacterial batch did not fulfill the requirements of performing replicate tests and meeting the % inhibition requirement of the ISO standard.

Wastewater

Various chemical wastewater parameters were analyzed. The results are shown in Table 7.23.

Parameters	Unit	Industrial wastewater	Domestic wastewater
Turbidity	FTU	15	2.4
TOC	mg/L	39	10
Conductivity	mS/m	4300	140
Alkalinity	mmol/L	6.9	5.5
рН	-	7.7	7.5
COD	mg/L	110	28
Suspended solids (SS)	mg/L	83	4.9
Nitrogen (total)	mg/L	6.3	6.9

Table 7.23Results of analytical parameters analyzed in wastewater.

Parameters	Unit	Industrial wastewater	Domestic wastewater
Phosphorus (total)	mg/L	4.2	0.23
BOD₅	mg/L	3.4	5.2

The two types of wastewater mainly differs in conductivity and content of organic material (TOC, COD and SS).

7.4 Amendments to and deviations from test plan

There has been no amendment to the test plan.

There have been 10 deviations to the test plan, all deviations have been approved. The test report reflects these deviations. A list of the deviations is included in Appendix 7.

APPENDIX 1

Terms and definitions used in the test plan

The abbreviations and definitions used in the verification test plan are summarized below. Where discrepancies exist between DANETV and U.S. EPA ETV terminology, definitions from both schemes are given.

Word	NOWATECH	US ETV
ADQ	Audit of data quality: An examination of a set	
	of data after it has been collected and 100 %	
	verified by project personnel, consisting of	
	tracing at least 10 % of the test data from	
	original recording through transferring, calcu-	
	lating, summarizing and reporting	
Agreement	Here defined as the % agreement between	
with accepted	literature values and test results	
values		
AMS Center	Advanced Monitoring Systems Center at Bat-	
Analytical la-	Independent analytical laboratory used to	
boratory	analyze reference samples	
Application	The use of a product specified with respect	
, application	to matrix, target, effect and limitations	
BOD ₅	Five-day biological oxygen demand	
CD	Criterion of detection	
СТАВ	Cetyl trimethyl ammonium bromide	
DANAK	The Danish Accreditation and Metrology	
	Fund	
DANETV ETV	The Danish Centre for Verification of Climate	
	and Environmental Technologies	
DS	Danish Standard	
Effect	The way the target is affected	
EN	European standard	
ETV	Environmental technology verification (ETV)	EPA program that develops generic
	is an independent (third party) assessment of	verification protocols and verifies the
	the performance of a technology or a product	performance of innovative environ-
	for a specified application, under defined	mental technologies that have the
	conditions and adequate quality assurance	potential to improve protection of nu-
FU	European Union	
Evaluation	Evaluation of test data for a technology	An examination of the efficiency of a
Evaluation	product for performance and data quality	technology
Experts	Independent persons qualified on a technol-	Peer reviewers appointed for a verifi-
	ogy in verification or on verification as a pro-	cation
	Cess	
GC	Gas chromatography	
GLP	Good laboratory practice	
ICP	Inductively coupled plasma	
ISO	International Standardization Organization	
LC	Liquid chromatography	
LID	Lowest ineffective dilution. Often seen as the	
	dilution in a dilution series causing less than	
	20 % inhibition	
Limit of detec-	Calculated from the standard deviation of	
tion	replicate measurements at less than 5 times	
LoD	the detection limit evaluated. Corresponding	
	to less than 5 % risk of false blanks	
LUMISsoft4	PC software from HACH-LANGE, produced	
	for LUMIStox	

Word	NOWATECH	US ETV
LUMIStherm	Thermostat from HACH-LANGE, produced	
	for LUMIStox	
LUMIStox	LUMIStox 300 bench top luminometer from	
	HACH-LANGE	
Matrix	The type of material that the product is in-	
	tended for	
Method	Generic document that provides rules, guide-	
MS	Mass spectroscopy	
	Organisation for Economic Co-operation and	
OLOD	Development	
PE	Performance evaluation	
Performance	The effects foreseen by the vendor on the	
claim	target (s) in the matrix of intended use	
Performance	Parameters that can be documented quanti-	
parameters	tatively in tests and that provide the relevant	
	information on the performance of an envi-	
	ronmental technology product	
Precision	The relative standard deviation obtained	
	from replicate measurements, here meas-	
	ured under repeatability or reproducibility	
(Environmen-	Ready to market or prototype stage product,	(Environmental) technology
tal) product	environmental technology	
04		
Range of an-	Generally: the range from the LoD to the	
plication	highest concentration with linear response	
photaion	For this verification the range is based on	
	range of dilution of a test sample	
Reference	Analysis of content of compounds in stock	
analyses	solutions by specified reference methods in	
	an accredited (ISO 17025) laboratory	
Reference test	Luminescence bacteria test performed ac-	
	cording to ISO 11348-3 by an accredited	
	(ISO 17025) laboratory	
Repeatability	I he precision obtained under repeatability	
	conditions, that is with the same measure-	
	ment procedure, same operations, same	
	tions and same location and system and	
	replicate measurements on the same or simi-	
	lar objects over a short period of time	
Reproducibility	The precision obtained under reproducibility	
	conditions, that is with measurements that	
	include different locations, operators, meas-	
	uring systems, and replicate measurements	
	on the same or similar objects	
Robustness	% variation in measurements resulting from	
	Deletive standard deviation in 0/	
ROD GM	Relative Standard deviation in %	
	Stanualu methou Suspandad salida	
Standard	Generic document established by concerning	
Stanualu	and approved by a recognized standardiza-	
	tion body that provides rules, guidelines or	

Word	NOWATECH	US ETV
	characteristics for tests or analysis	
SWEDAC	Swedish Board for Accreditation and Con-	
	formity Assessment	
Target	The measurable property that is affected by	
	the product	
(Environmen- tal) technology	The practical application of knowledge in the environmental area	An all-inclusive term used to describe pollution control devices and systems, waste treatment processes and stor- age facilities, and site remediation technologies and their components that may be utilized to remove pollu- tants or contaminants from, or to pre- vent them from entering, the environ- ment
Test/testing	Determination of the performance of a prod-	
тос	Tetel organia corbon	
TUC	Total organic carbon	
Tueness	from knowledge on the preparation of test	
	solutions or from measurements with refer-	
	ence methods	
TSA	Technical system audit	
U.S. EPA	United States Environmental Protection	
Vendor	The party delivering the product or service to the customer	The technology developer, owner, or licensee seeking verification
Verification	Evaluation of product performance parame- ters for a specified application under defined conditions and adequate quality assurance	Establishing or proving the truth of the performance of a technology under specific, predetermined criteria, test plans and adequate data QA proce- dures
Vibrio fischeri	Light producing bacteria used in luminescent bacteria test	
VKI	Former Danish Water Quality Institute, today DHI	

APPENDIX 2

References

- DANETV. LUMIStox 300 Bench Top Luminometer, ECLOX Handheld Luminometer. Luminescent bacteria test for use in wastewater. Joint verification protocol. DHI. 2009. Published at <u>www.etv-</u> <u>denmark.com</u>.
- 2. ISO 11348-3. Water quality Determination of the inhibitory effect of water samples on the light emission of *Vibrio fischeri* (Luminescent bacteria test). 11348-3. 2007.
- 3. ISO. Water Quality On-line sensors/analysing equipment for water Specifications and performance tests. ISO 15839. 2006.
- 4. Battelle. Environmental technology verification program. Advanced monitoring systems center. Test/QA plan for verifications of rapid toxicity technologies. June 2003.
- 5. ISO. General requirements for the competence of testing and calibration laboratories. ISO 17025. 2005.
- 6. DHI. DHI Quality Manual. 2008.
- 7. International Standardization Organisation. EN ISO 9001. Quality management systems Requirements. 15-11-2008.
- 8. OECD. OECD Principles of Good Laboratory Practice. OECD GLP Document No. 1. 21-1-1998.
- 9. Battelle. Quality Management Plan (QMP) for the ETV Advanced Monitoring Systems Center. Version 7.0. Dated November 2008.
- 10. ETV Test Center and Test Organization. Center quality manual Water technology. Version 2. October 2009.
- ICH Harmonised Tripartite Guideline. Validation of analytical procedure: Text and methodology Q2(R1). International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. Current Step 4 version. November 2005.
- 12. ISO. Water quality Guide to analytical quality control for water analysis. ISO/TR 13530. 1997.
- 13. Email correspondence between Mette Tjener Andersson, DHI and Dr. Elmar Grabert, HACH-LANGE. Regarding: Glass and plastic vials. Dated 6. November 2009.
- 14. DANETV. LUMIStox 300 Bench Top Luminometer, ECLOX Handheld Luminometer. Luminescent bacteria test for use in waste water. Joint test plan. DHI. 2009. Published at <u>www.etv-denmark.com</u>.
- Battelle. Quality Assurance Routing Sheet ETV Program. Joint Verification of the HACH-LANGE GmbH LUMIStox 300 Bench Top Luminometer and ECLOX Handheld Luminometer. Audit type: TSA. Date 12 February 2010.
- DANETV. LUMIStox 300 Bench Top Luminometer, ECLOX Handheld Luminometer. Luminescent bacteria test for use in waste water. Joint verification report. DHI. 2010. Published at <u>www.etvdenmark.com</u>.

APPENDIX 3

Reference methods

Reference test and reference analyses are described in the test plan Section 4.3 Methods of test and analysis.

Conductivity and salinity measurement methods were provided with the instrument.

A cyanide test kit, HACH-LANGE LCK 315, was used according to the method description included in the kit.

APPENDIX 4

In-house test methods

Laboratory protocol for verification of LUMIStox 300 Bench Top Luminometer and ECLOX Handheld Luminometer

1. Objective

The objective of this protocol is to describe in detail the work to be carried out for the verification of LUMIStox 300 Bench Top Luminometer and ECLOX Handheld Luminometer in accordance with the verification protocol /1/ and test plan /2/.

2. Identification

Project No.: 11800378-2

3. Vendor

HACH-LANGE GmbH, Willstätterstrasse 11, 40549 Düsseldorf, Germany, phone +49 211 5288 0. Contact Dr. Elmar Grabert email: <u>elmar.grabert@hach-lange.de</u>, phone +49 211 5288 241.

4. Test facility

DHI Agern Allé 5 DK-2970 Hørsholm Denmark

5. Personnel responsible for the test

Test responsible: Technicians:

Claus Jørgensen Connie Seierø Jane Bergstrøm

6. Instruments to be tested

The test covers two instruments from the same vendor, both instruments determine acute toxicity with luminescent bacteria. The instruments are LUMIStox 300 bench top luminometer and ECLOX handheld luminometer. Both will be operated in connection with a LUMIStherm thermostat and the PC software LUMISsoft4 ver 1.001 /8/ except for test series E where the ECLOX will be operated with the firm ware.

7. Safety handling

The test compounds will be handled in accordance with the MSDSs which are available to the technicians.

8. Test principle

To verify the instruments the following performance parameters will be analysed:

```
The criterion of detection (CD)
The range of application
Precision
- repeatability
- reproducibility
Agreement with accepted values
Robustness
```

The tests will be performed in a series of experiments according to the test plan /2/:

		Equ	ipment		Matrix	
Test series.	Performance parameters	LUMIStox	ECLOX incl. thermostat and software	ECLOX incl. firm- ware	2% NaCl in MQ water	Wastewater
А	Range, Repeatability, Agreement with accepted values	х	х		х	
В	Criterion of detection	х	х		х	
С	Robustness, effect of start conc. on repeatability	х	х		х	
D	Reproducibility	х	х		х	
Е	Robustness, sample temperature at field use			х	х	
F	Robustness, sample temperature at laboratory use	х	х		х	
G	Robustness, pH	х	Х		х	
Н	Robustness, color	х	х		х	
	Robustness, turbidity	х	х		х	
J+K	Robustness, matrix	х	х			х
L	Robustness, cuvettes	х			х	

9. Procedure

9.1 Start up procedure for LUMIStox 300.

Follow the procedure in the LUMIStox 300 operation manual /3/ page 6.

Perform daily temperature control of the LUMIStherm heating block(s) (see section 9.3.2).

Adjust the measuring shaft temperature according to section 3.7 of the operating manual /3/.

9.2 Start up procedure for ECLOX

Follow the procedure in the ECLOX user manual /4/ page 7.

Ensure that the temperature of the LUMIStherm heating block(s) is set to 15 °C.

9.3 Temperature control of LUMIStherm

9.3.1 Initial temperature control

The three LUMIStherm thermo blocks will initially be tested for temperature variation at 15 °C in all wells. A high quality traceable calibrated thermo sensor will be used with a precision of 0.1 °C.

- 1. Mark the three LUMIStherms A, B, and C respectively.
- 2. Switch on the LUMIStherms
- 3. Insert plastic vials (10.8.1) in all small wells (A1 to C10) and add 1 mL of sodium chloride solution (10.1). Insert reaction vials (10.8.3) in the two large right hand side wells and add 5 mL of sodium chloride solution (10.1). Wait 15 minutes to allow for temperature equilibration.
- 4. Temperature equilibrate the thermo sensor in one of the wells.
- 5. Measure the temperature in all wells and record in a spread sheet.
- 6. Determine the $T_{average}$, T_{max} , T_{min} and T_{median} temperature of the small wells for each LUMIStherm. The temperature will be accepted if all wells are within 15 °C ± 0.8 °C. Determine the temperature interval between max temperature and 16.0 °C (ΔT_{max}), and the temperature interval between min temperature and 14 °C (ΔT_{min})
- 7. Identify the small well with the median temperature.
- 8. Determine the temperature variation in well 5B over a period of 1.5 hours. A variation of \pm 0.3 °C is acceptable.

9.3.2 Daily temperature control

Determine and record on each day of operation, the temperature in the median temperature well. The temperature will be accepted if the temperature is within the range between $T_{median} + \Delta T_{max}$ and $T_{median} - \Delta T_{min}$.

9.4 Storage and preparation of suspensions of luminescent bacteria (*Vibrio fischeri* NRRL-B-11177).

9.4.1 Storage

The freeze-dried bacteria can be stored at -18 °C until the date shown on the package. Reactivated bacteria should be used within 4 hours when possible. However longer storage time is acceptable as long as the validity criteria stated in clause 11 of EN/ISO 11348-3 /6/ are met. Reactivated bacteria should only be placed in temporary storage under undiluted condition. Tubes containing thawed but not reactivated freeze-dried bacteria can be refrozen. /5/.

9.4.2 Preparation of stock suspension

(According to EN/ISO 11348-3: 2007 /6/.)

Remove the vial of the freeze-dried culture from the freezer immediately before reconstitution in water. For the reconstitution, cool 1.2 mL of reconstitution solution LCX 047 (10.3) in a glass test tube to 4 °C \pm 3 °C.

Pour this volume of cooled water all at once into the lyophilized bacteria in the vial, thereby minimizing cell damage during the rehydration process.

It is important that the water be added quickly to allow the bacteria to come into contact with the water at once, thus avoiding clumping and loss of activity. Therefore do not use a pipette. The exact volume of water is not critical.

The reconstituted luminescent bacteria suspension serves as a stock suspension; store at 4 °C \pm 3 °C.

9.4.3 Preparation of test suspension

(According to EN/ISO 11348-3:2007, variant B /6/.)

The test suspension will be prepared outside the test tubes in a conical flask (volume e.g. 250 mL).

Ad 1 volume of stock suspension (9.4.2) to 50 volumes of the solution for freeze-dried bacteria (10.6) maintained at 4 °C \pm 3 °C and mix the resultant suspension thoroughly.

9.4.4 Quality control of test bacteria

All batches of bacteria must be controlled according to clause 11 of EN/ISO 11348-3 /6/. The tests will be carried out on the first day of use of the specific bacterial batch.

Each stock suspension will be controlled as described in clause 11 of EN/ISO 11348-3 /6/. The reference substance will be selected on the basis of preliminary test results.

9.5 Sample preparation

Samples made by adding test chemicals to sodium chloride solution (10.1) are called "artificial samples" in this protocol.

Measure the oxygen concentration in all samples. A concentration > 3 mg/L will be accepted. /6/. Aerate if the concentration is < 3 mg/L

Measure the pH of all samples. If necessary adjust the pH with either HCl (10.5) or NaOH (10.4). Record the volumes used for pH adjustment. Restrict the volume added to no more than 5 % of the total volume /6/.

All artificial samples will be adjusted to pH 7.0 \pm 0.2.

Waste water samples will be adjusted to be between pH 6.0 \pm 0.2 and pH 8.5 \pm 0.2 in agreement with EN/ISO 11348-3: 2007 /6/

The salt concentration of the sample will be increased to 2 % by adding solid NaCl. For example 2 g pr 100 mL of sample. /3/ If the salt concentration in the sample exceeds 20 g/L (guide value: conductivity of 35 mS/cm) do not add NaCl. The salt content should not exceed 50 g/L. /5/

9.6 **Preparation of sample dilution rows**

Dilution rows will be used in test series A, C, D, and K.

A dilution row will be produced in accordance with the standard dilution row described in the LUMIStox 300 Operation manual page 33 /3/. The principle is illustrated in figure 9.1.

Figure 9.1: Principles of preparation of dilution rows from /3/.

- 1. Insert 10 vials into row A and pipet LCK 481 sodium chloride solution (10.2) into the vials according to figure 9.1, i.e. 1.5 mL in position A1 to A8 of the LUMIStherm thermo block and 1 mL in position A9.
- 2. Add 1.5 mL sample into the vial in position A10, 2 mL sample in the vial in position A9 and 1.5 mL sample in the vial in position A8.
- 3. Pipet 1.5 mL from the vial in position A9 to the vial in position A7 and mix thoroughly drawing the mixture into the pipette 3 times. Continue by pipetting 1.5 mL into the vials in the positions A5 and A3 as illustrated in figure 9.1.
- 4. Pipet 1.5 mL from the vial in position A8 to the vial in position A6 and mix thoroughly drawing the mixture into the pipette 3 times. Continue by pipetting 1.5 mL into the vials in the positions A4 and A2 as illustrated in figure 9.1.

Leave the dilutions in 15 minutes in the LUMIStherm thermo block to bring them to the correct temperature.

9.7 Test procedure

9.7.1 Determining inhibition under lab conditions

Connect the LUMIStox 300 and the ECLOX to the computers. Switch on the computers. Switch on the LUMIStox 300 and the ECLOX. Switch on the LUMIStherm thermo block(s). Allow 30 minutes for equilibration.

Prepare the dilution row as described in (9.6) or samples as described in (9.5). Prepare the test suspension as described in (9.4.3).

Use plastic measuring tubes (10.8.1) except in test series L, where both plastic tubes and glass tubes (10.8.2) will be used.

- 1. Insert the appropriate number of plastic measuring tubes (10.8.1) in rows B and C.
- 2. Pipette 0.5 mL bacteria test suspension (9.4.3) into the measuring tubes and leave 15 minutes to acquire the correct temperature.
- 3. Open the LUMISsoft software and enter information on the samples to be analysed according to the LUMISsoft manual p. 16 27 / 8/.
- 4. Measure the initial luminescence in the vial in position B1 first on LUMIStox 300 then on ECLOX.
- 5. Measure the initial luminescence in the vial in position C1 first on LUMIStox 300 then on ECLOX. During the measurement of vial C1 add 0.5 mL of diluted sample from position A1 into the measuring vial in position B1 and mix 3 times with the pipette.
- 6. Measure the initial luminescence in the vial in position B2 first on LUMIStox 300 then on ECLOX. During the measurement of vial B2 add 0.5 mL of diluted sample from position A1 into measuring tube C1 and mix 3 times with the pipette. Continue until all measuring tubes have been measured and added sample. There is no need for changing pipette tips except for the control.
- After 15 minutes calculated from the time of the first reading, determine the luminescence in the measuring tube B1first on the LUMIStox 300 then on the ECLOX. Measure the luminescence in the measuring tube C1 after the selected time interval (T_{between}). Continue to measure the luminescence in the remaining measuring tubes.
- 8. Repeat 7 after 30 minutes after the first reading.

9.7.2 Determining inhibition under field conditions

Follow the instructions in the ECLOX user manual pages 19 - 21.

10. Reagents and test tubes

10.1 Sodium chloride solution.

Dissolve 20 g of sodium chloride (NaCl) in MQ-water and make up to 1 L with MQ-water. Store at 4 $^{\circ}$ C to 8 $^{\circ}$ C.

10.2 Hach-Lange sodium chloride solution (LCK 481)

Sodium choride solution (2 %) delivered by Hach-Lange. no. 10159, exp. date 10.2010. Store at 4 °C to 8 °C.

10.3 Hach-Lange reconstitution solution (LCX 047)

Reconstitution solution after EN/ISO 11348-3 delivered by Hach-Lange. No. 04179, exp. date 10.2010. Store at 4 °C to 8 °C.

10.4 Sodium hydroxide solution

NaOH in MQ-water, 1 mol/L or another suitable concentration.

10.5 Hydrochloric acid

HCl in MQ-water, 1 mol/L or another suitable concentration.

10.6 Hach-Lange test suspension solution for freeze-dried bacteria (LCX 048)

Diluent after EN/ISO 11348-3 delivered by Hach-Lange. No. 10309, exp. date 10.2010. Store at 4 °C to 8 °C.

10.7 Reference substances

Do <u>not</u> adjust pH of the reference substance solutions.

10.7.1 Zinc sulphate heptahydrate

19.34 mg/L ZnSO₄· 7 H₂O in 2 % sodium chloride solution (10.1) .

10.7.2 3,5 – dichlorophenol

6.8 mg/L 3,5 - dichlorophenol (Purity > 99%) in 2% sodium chloride solution (10.1).

10.7.3 Potasium dichromate

105.8 mg/L K₂Cr₂O₇ in 2 % sodium chloride solution (10.1).

10.8 Test tubes

10.8.1 Plastic test tubes

Sarstedt tubes 3.5 mL, 55 x 12 mm, PS. ref no. 55.485. Delivered by Hach Lange

10.8.2 Glas test tubes

LZP 187 Glasküvetten für LUMIStox AR-Klar. 50.0 X 12.0/0.60 mm. Delivered by Hach Lange.

10.8.3 Reaction vials with cap.

LZP 065 Reaktionsgläser mit verschluss, delivered by Hach-Lange.

11. Test setup

Generally, tests will be run in triplicate, i.e. three rows of dilution will be prepared from the same artificial sample and tested in separate test runs. Each test run will be performed in duplicate (i.e. row B and C). All test runs will include a blank consisting of 0.5 mL of test suspension (9.4.3) and 0.5 mL of sodium chloride solution (10.2).

Readings will be done after 15 minutes and 30 minutes.

If there is a visible colour at the EC_{20} concentration, colour correction will be applied.

11.1 Test series A

11.1.1 Purpose

To analyse range, repeatability and agreement with accepted values of EC_{20} and EC_{50} .

11.1.2 Tests to be performed

 EC_{20} and EC_{50} will be determined on artificial samples made in sodium chloride solution (10.1) with the compounds shown in table 11.1.

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

Table 11.1: Compounds to be tested in test series A			
CAS no.	Compound	Expected EC ₅₀ (mg/L)	
7758-99-8	CuSO ₄ ,5H ₂ O	7.1 as Cu^{2+}	
7778-50-9	$K_2Cr_2O_7$	18.7 as Cr ⁺⁶	
7446-20-0	ZnSO ₄ ,7H ₂ O	2.2 as Zn^{2+}	
76674-21-0	Flutriafol	unknown	
3380-34-5	Triclosan	0.28	
151-50-8	KCN	4 as CN⁻	
151-21-3	SDS	2.09	
57-09-0	CTAB	0.97	
104-35-8	4-NPE	unknown	

For KCN, a pre-experiment will be performed to examine evaporation of HCN. An artificial KCN sample will be carried through the test procedure where the test suspension will be exchanged with the solution for freeze-dried bacteria (10.6) and without performing measurements of luminescence. Instead the CN^- concentration will be measured using a Hach-Lange test (LCK 315). Test row B will be analysed at time 0 and test row C will be analysed after time 30 minutes. In addition, the concentration of the artificial KCN sample will be analysed. If the decrease in the average CN^- concentration from time 0 to time 30 is higher than 20%, then the KCN test will be aborted.

11.1.3 Sampling for chemical analyses

Samples for chemical analysis of CuSO₄, K₂Cr₂O₇, ZnSO₄, KCN, Flutriafol and Triclosan will be taken in duplicate from the prepared artificial samples, and shipped to the analytical laboratory.

SDS, CTAB and 4-NPE are expected to adsorb to the measurement tubes. Therefore samples for chemical analysis will be prepared by adding 1.5 mL of artificial sample and 1.5 mL of solution for freeze-dried bacteria (10.6) in each of 10 plastic tubes (10.8.1) at 15 °C and mixed three times with the pipette. The mixtures will then be poured to glass sample containers. Only one sample will be analysed pr. compound.

Performance control of Eurofins analysis will be performed by sending 2 blanks (MilliQ water) to analysis for each of the target compounds.

Samples will be transferred to sample containers delivered by Eurofins.

Sample labeling will be coded.

11.1.4 Sampling for toxicity analysis at AlControl

Artificial samples will be taken for all target compounds except KCN. One of the samples will be analyzed three times. KCN is exempted to avoid complications related to shipment and handling by AlControl.

Two samples of 2 % NaCl solution (10.2) will be taken to ensure non-toxicity.

The samples are frozen at - 20 °C \pm 3 °C and send to Alcontrol after the last sample is taken.

Sample labeling will be coded.

11.2 Test series B

11.2.1 Purpose

To determine criterion of detection.

11.2.2 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

A number (≥ 9) of test mixtures of 0.5 mL of 2 % NaCl (10.1) and 0.5 mL test suspension (9.4.3) will be measured in duplicate.

11.3 Test series C

11.3.1 Purpose

To determine robustness of determination of EC_{50} and EC_{20} in relation to the concentration.

11.3.2 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

A test compound and the concentration ranges will be decided after completion of series A.

The first concentration range will have the highest test concentration at approximately EC_{60} . The second concentration range will have the highest test concentration at approximately EC_{30} .

11.4 Test series D

11.4.1 Purpose

To determine reproducibility.

11.4.2 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

One test compound and the concentration range will be selected after completion of series A.

The reproducibility parameters will be: different days, different technicians, and different batches of test bacteria according to Table 7-24.

Table 7-24: Variation of reproducibility parameters			
Day	Bacterial batch	Technician	
1	А	J	
2	В	С	
3	С	J	
*4	D	С	

*Will only be performed if a bacterial fourth batch is made available.

11.5 Test series E

11.5.1 Purpose

To determine robustness of the ECLOX instrument at different temperatures.

11.5.2 Tests to be performed

Tests will be performed on the ECLOX instrument with firmware according to procedure described in the ECLOX user manual /4/ pages 19 to 21.

Based on the results obtained in series A, two compounds will be selected for test: one metal and one organic compound. Each compound will be tested in triplicate and at three different

temperatures: One at room temperature, two in a climate rooms at respective approximately 5 and 15 $^{\circ}$ C.

The test setup is illustrated in Table 7-25. The concentration of the test compound in the test sample shall be twice the EC_{50} .

Table	Table 7-25: Test setup for series E									
Tube	Test suspension (9.4.3)2% NaCl (10.1)Sample									
	(mL)	(mL)	(mL)							
1	0.2	0.8	none							
2	0.2	0.6	0.2							
3	0.2	0.3	0.5							
4	0.2	none	0.8							

Each of the two test compounds will be tested in triplicate.

The room temperature will be recorded.

11.6 Test series F

11.6.1 Purpose

To determine robustness at different sample temperatures.

11.6.2 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

The test compound will be selected based on results obtained in previous tests.

Adjust two of LUMIStherm thermo blocks to approximately 14 °C and 16 °C, respectively, after the procedure described in section 9.3.1. Adjustment of the temperature is done by turning the "Cal." screw. It may not be possible to reach 14 °C and 16 °C. In this case maximum and minimum temperature adjustments will be selected.

The tests will be run at 14 °C, 15 °C and 16 °C at EC₂₀ in triplicate.

The test will be performed as the last test to avoid temperature variations over the test series.

11.7 Test series G

11.7.1 Purpose

To determine robustness at different pH.

11.7.2 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

The test compound will be selected based on results obtained in previous tests.

The test will be performed at EC_{20} in triplicate.

A stock solution of the test compound at a concentration corresponding to twice the EC_{20} will be prepared and separated into three separate artificial samples, which will be adjusted to pH 6.0 ± 0.2 , 7.0 ± 0.2 , or 8.5 ± 0.2 respectively with either HCl (10.5) or NaOH (10.4) and tested.

11.8 Test series H

11.8.1 Purpose

To determine robustness in relation to colour.

11.8.2 Tests to be performed

11.8.2.1 Screening of toxicity of dyes to determine dye test concentrations.

An artificial sample will be made in sodium chloride solution (10.1) as a mixture of 20 mg/L of Ponceau 4R (E124), 20 mg/L of Green S (E142) and 20 mg/L of Yellow no.5 (E102). Alternative concentrations may be used if appropriate.

 EC_{50} on this sample will be determined on the LUMIStox 300 with the colour correction feature switched on. See page 23 of the LUMIStox user manual /3/ and pages 70 to 77 of the LUMISsoft 4 manual /8/.

The test data will be analysed with and without colour correction. A range of concentrations with colour correction and without toxicity will be determined and used to define the dye concentrations to be used in the subsequent test.

11.8.2.2 Colour robustness on LUMIStox 300.

11.8.2.2.1 Preparation of test samples

A stock solution in sodium chloride (10.1) with an appropriate concentration of the selected test compound will be made. An appropriate volume of the stock solution will be added to each of three 100 mL measuring flasks to achieve a concentration of the test compound corresponding to twice the EC_{20} in the final test sample. Varying volumes of sodium chloride solution (10.1) and the dye solution described in section 11.8.2.1 will be added to achieve the dye concentrations determined in the screening test in section 11.8.2.1.

11.8.2.2.2 Preparation of dye control samples

The dye control samples will be made as the test samples (11.8.2.2.1) except that the stock solution will be left out and replaced by sodium chloride solution (10.1).

11.8.2.2.3 Preparation of test compound control samples

The test compound control samples will be made as the test samples (11.8.2.2.1) except that the dye solution will be left out and replaced by sodium chloride solution (10.1).

11.8.2.2.4 Test setup

The test will be performed on LUMIStox 300 incl. thermostat and software.

The test will be performed in triplicate each with a blank consisting of 0.5 mL of test suspension (9.4.3) and 0.5 mL of sodium chloride solution (10.2), a dye control (11.8.2.2.2) and a test compound control (11.8.2.2.3). Each triplicate in will be analysed in duplicate.

11.8.2.3 Colour robustness on ECLOX.

Tests will be performed on ECLOX incl. thermostat and software with colour correction according to EN/ISO 11348-3.

The tests will be performed on the same samples as used for the LUMIStox 300 (11.8.2.2).

11.9 Test series I

11.9.1 Purpose

To determine robustness in relation to turbidity.

11.9.2 Screening of toxicity of BaSO₄.

This screening test will be run to ensure that BaSO₄ is non-toxic.

A volume of 10 mL of a 0.2 g/L of $BaSO_4$ in sodium chloride solution (10.1) will be centrifuged 10 minutes at approx. 5000 g.

The inhibitory effect of the supernatant will be determined in 5 duplicate tests with 5 blanks run in the same rows. Readings after 15 minutes and 30 minutes.

If the average inhibition is significant higher than the CD determined in section 11.2 an alternative turbidity sample will be selected. If the alternative also shows inhibition, then the test for turbidity robustness will not be carried out.

11.9.3 Tests to be performed

11.9.3.1 Turbidity robustness on LUMIStox 300.

11.9.3.1.1 Preparation of test samples

A stock solution in sodium chloride (10.1) with an appropriate concentration of the selected test compound will be made. An appropriate volume of the stock solution will be added to each of three 100 mL measuring flasks to achieve a concentration of the test compound corresponding to twice the EC_{20} in the final test sample. Varying volumes of sodium chloride solution (10.1) and a 1 g/L BaSO₄ in sodium chloride solution (10.1) will be added to achieve final BaSO₄ concentrations of 0.2 mg/L, 0.1 mg/L and 0.05 mg/L.

11.9.3.1.2 Preparation of turbidity control samples

The turbidity control samples will be made as the test samples (11.9.3.1.1) except that the stock solution will be left out and replaced by sodium chloride solution (10.1).

11.9.3.1.3 Preparation of test compound control samples

The test compound control samples will be made as the test samples (11.9.3.1.1) except that the BaSO₄ suspension will be left out and replaced by sodium chloride solution (10.1).

11.9.3.1.4 Test setup

The test will be performed on LUMIStox 300 incl. thermostat and software.

The test will be performed in triplicate each with a blank consisting of 0.5 mL of test suspension (9.4.3) and 0.5 mL of sodium chloride solution (10.1), a turbidity control (11.9.3.1.2) and a test compound control (11.9.3.1.3). Each triplicate in will be analysed in duplicate.

11.9.3.2 Turbidity robustness on ECLOX.

Tests will be performed on ECLOX incl. thermostat and software with colour correction according to EN/ISO 11348-3.

The tests will be performed on the same samples as used for the LUMIStox 300 (11.9.3.1).

11.10 Test series J

This test series will be performed after series K.

11.10.1 **Purpose**

To determine robustness in relation to the matrix.

11.10.2 Waste water samples

See section 011.11.2.

11.10.3 Preparation of test samples

11.10.3.1 Preparation of waste water test samples

If the waste water samples are found to be toxic, they will be diluted to non-toxicity level and otherwise handled as described in section 9.5.

Five test compounds will be selected based on results obtained in previous tests.

For each compound a stock solution in sodium chloride solution (010.1) with a concentration corresponding to 4 times the EC_{20} will be made. Waste water test samples will be made by mixing 1 part of waste water samples with 1 part of the 4 times EC_{20} solutions.

11.10.3.2 Preparation of test compound control samples

Test compound control samples will be made by mixing 1 part of sodium chloride solution (10.1) with 1 part of the 4 times EC₂₀ solutions.

11.10.3.3 Preparation of waste water control samples

The waste water control samples will be made by mixing 1 part of sodium chloride solution (10.1) with 1 part of the waste water sample.

11.10.3.4 Sampling for toxicity analysis at AlControl

Samples of one spiked, non-inhibiting domestic wastewater and one spiked, non-inhibiting industrial wastewater. Three replicates will be performed for one of the wastewater samples. The samples are frozen at - 20 °C \pm 3 °C and send to Alcontrol after the last sample is taken.

Sample labeling will be coded.

11.10.4 Tests to be performed

The test will be performed on LUMIStox 300 and ECLOX incl. thermostat and software.

The test will be performed in triplicate each with a blank consisting of 0.5 mL of test suspension (9.4.3) and 0.5 mL of sodium chloride solution (10.1), a test compound control (11.10.3.2) and a waste water control (11.10.3.3). Each triplicate in will be analysed in duplicate.

11.11 Test series K

This test series will be performed before test series J.

11.11.1 Purpose

To determine robustness in relation to the matrix.

11.11.2 Waste water samples

Treated industrial waste water (2 times 5 L in pp-plastic containers) was received from Chemionova on December 7, 2009. The samples were cool upon arrival and stored at 4 °C \pm 2 °C in the cooling room. The samples were marked with ØT-nr.: 09-0834, A and B respectively.

Treated domestic waste water will be obtained from Lundtofte Waste Water Treatment Plant.

11.11.2.1 Sampling for chemical analyses

Single samples for chemical analysis of the waste water will be taken prior to the test in the sample containers provided by Eurofins. The analytical parameters are shown in Table 4.1.

Table 7-26 Analytical parameters for waste water.						
Turbidity	COD					
TOC	Suspended solids (SS)					
Conductivity	Nitrogen (total)					
Alkalinity	Phosphorus (total)					
рН	BOD ₅					

11.11.3 Preparation of waste water samples

The samples will be handled as described in section 9.5.

11.11.4 Tests to be performed

The test will be performed on LUMIStox 300 incl. thermostat and software with the colour correction feature switched on.

Test will also be performed on ECLOX incl. thermostat and software. If a significant effect of colour correction is observed on the LUMIStox 300, colour correction according to ISO 11348-3 will be performed.

11.12 Test series L

11.12.1 Purpose

To determine robustness in relation to use of different measuring cuvettes

11.12.2 Tests to be performed

The test will be performed on LUMIStox 300 incl. thermostat and software.

Two test compounds will be selected based on results obtained in previous tests. One compound will be selected among the compounds expected to adsorb to the plastic cuvette (SDS, CTAB or 4-NPE) and one compound will be selected among the compounds not expected to adsorb to the plastic cuvette (Cu^{2+} , $Cr_2O_7^{2-}$ or Zn^{2+})

The test will be performed at EC_{20} , i.e. at a sample concentration corresponding to twice the EC_{20} . The test will be run in 3 glass test tubes (10.8.2) with samples and 3 corresponding blanks (10.1) in glass test tubes and in 3 plastic test tubes (10.8.1) with samples and 3 corresponding blanks (10.1) in plastic tubes. The test will be performed three times in duplicate.

12. Data to be recorded

All measurements of luminescence will be recorded electronically on the PCs connected to the instruments. At the end of a test day a copy of the data will be placed on the DHI server at \\Dkstor\11800378_DAN_ETV\DHI delcenter\Verifikationer\HachLange\DHI laborato-ry\results in separate folders named by the date (YYYY-MM-DD). In the test series E, data will be retrieved and stored electronically in a folder named "series E".

The format of hard copies of the raw data will be decided at a later stage.

Data from initial and daily temperature control including will be recorded.

For each toxicity test, the following information will be recorded when relevant:

Date and time,

Test series, samples including controls and concentrations of test compounds, Initials of the performing technician,

Bacterial batch, date and time of reconstitution and related quality control data, Pipettes used,

pH of sample, pH meter used, pH adjustment,

Salinity, conductivity meter used,

Oxygen saturation, oxygen electrode used,

Stock solutions used.

13. Time schedule

Tests will be started 2010.01.13 and will go on for 4 weeks.

The planned sequence of the tests and expected days required is shown in Table 7-27. It is anticipated that approximately half of the time requires two technicians.

Table 7-27: Planned sequence of testing and expected time re-								
quired								
Series L	1							
Series B	0.1							
Series A	3							
Series G+H+I	1							
Series D	1							
Series K	1							
Series D	1							
Series J	1							
Series D	1							
Series C	1							
Series E	1							
Series F	1							
	13							

14. Quality Assurance

The quality assurance will be performed in accordance with the joint verification protocol /1/

15. Reports

Reporting will be performed in accordance with the joint test plan /2/

16. Archives

All data generated and all other records and information relevant to the quality and integrity of the study will be retained. They will be filed in the archives of DHI after termination of the study and retained for a period of 10 years after issue of the final report.

17. Deviations and protocol amendments

Deviations and amendments will be handled in accordance with the joint test plan /2/

18. References

- /1/ LUMIStox 300 Bench Top Luminometer ECLOX Handheld Luminometer. Joint verification protocol. Luminescent bacteria test for use in wastewater. December 2009. Mette Tjener Andersson. DHI. Project no. 11800378
- /2/ LUMIStox 300 Bench Top Luminometer ECLOX Handheld Luminometer Joint test plan. Luminescent bacteria test for use in wastewater. Claus Jørgensen and Mette Tjener Andersson. Project no. 11800378.
- /3/ LUMIStox 300. Manual. Hach Lange. January 2008. Version 3.02 and above. BDA 356.
- /4/ Luminiscent bacteria test using the ECLOX Instrument. User manual. September 2009, Edition beta 2. Hach Company.
- /5/ Luminiscent bacteria test with freeze-dried bacteria according to EN/ISO 11348-3. Dr. Lange. Luminiscent bacteria test LCK 491.
- /6/ EN/ISO 11348-3:2007(E). Water Quality Determination of the inhibitory effect of water samples on the light emission of *Vibrio fischri* (Luminiscent bacteria test). Part 3: Method using freeze-dried bacteria.
- /7/ Luminiscent bacteria test with freeze-dried bacteria according to EN/ISO 11348-3. Dr. Lange. Luminiscent bacteria test LCK 491.
- /8/ Dr. Lange LUMISsoft 4 Manual LZV 093, ver 1.001.

PROTOCOL APPROVAL

Issued by

Claus Jørgensen Test Responsible Date:

Concurred by

Bodil Mose Pedersen Quality Assurance Unit Date:

Protocol copy no. of 3

APPENDIX 5

In-house analytical methods

None

APPENDIX 6

Test data report

<u>Test A</u> 15 min testtid

LUMIStox				Without color correction				With color correction			
Comment		Deviliante	Control 15 min		Detak Na	5620 (m = //)	5050 (m = /l.)	olor orrection	5620 (m = //)	5050 (m m/l)	Standard ZnSO4,7H2O
Compound	4	Replicate	valid	Remarks	Batch No.	EC20 (mg/L)	ECSU (mg/L)	88	EC20 (mg/L)	ECS0 (mg/L)	9.67 mg/L
7=004 71120	T	1	3.33		10129	3.614	8.837	IN N			27.12
ZNSO4,/H2O		2	2.33			3.686	8.581	N			25.95
as Zn		3	2.85			3.088	8.189	N			20.17
	2	1	1.57		10129	0.003037	n.c	Y	n.c	n.c	31.90
CuSO4,5H2O		2	0.80			n.c	n.c	Y	n.c	n.c	29.06
as Cu		3	0.38			n.c	n.c	Y	n.c	n.c	-
	3	1	1.47		11169	0.33	1.02	N			28.70
SDS		2	2.40			0.46	1.437	N			27.64
		3	2.61			0.59	1.69	N			30.20
	4	1	3.44		10129	0.16	0.37	N			22.43
Triclosan ⁴⁾		2	1.61			0.20	0.40	Ν			24.16
		3	1.01			0.20	0.42	Ν			20.91
	5	1	0.58		10129	4.413	n.c	Y	4.413	n.c	45.88
K2Cr2O7		2	0.43			1.374	n.c	Y	1.288	n.c	38.36
as Cr		3	0.34			5.074	n.c	Y	4.459	n.c	40.86
	6	1	2.31		10129	0.73	1.308	Ν			28.98
СТАВ		2	0.71			0.76	1.327	Ν			28.74
		3	1.35			0.75	1.389	Ν			28.75
	7	1	2.60	5)	10129	68.532	n.c	Ν			45.91
Flutriafol		2	3.03	normal procedure		n.c	n.c	Ν			23.87
		3									
	8	1	1.89		10129	2.546	n.c	Ν			29.51
KCN		2	5.46			3.003	n.c	Ν			31.96
		3	0.29	6)		2.546	28.504	Ν			38.14
		4	0.77	6)]	2.205	19.54	N			38.64

ECLOX						Without color correction					
Compound		Penlicate	Control 15 min	Romarks	Batch No	EC20 (mg/L)	EC50 (mg/L)		Standard ZnSO4,7H2O		
compound	1	1	2 35	Refficience	10129	3 284	8 555		19 50		
7nSO4.7H2O	-	2	2.05		10125	3,832	8.537		27.45		
as Zn		3	1.91			3.297	8.177		25.21		
	2	1	0.45		10129	n.c	n.c		26.06		
CuSO4,5H2O		2	0.34			n.c	n.c		22.64		
as Cu		3	1.85			n.c	n.c		-		
		4	3.68	1)		0.4	1.887		28.98		
		5	3.46	2)		n.c	n.c		26.07		
	3	1	0.52	3)	11169	0.33	1.16		28.45		
SDS		2	0.25			0.40	1.086		32.38		
		3	2.53			0.64	1.888		29.93		
	4	1	0.74		10129	0.16	0.37		26.81		
Triclosan ⁴⁾		2	2.34			0.19	0.39		20.98		
		3	1.40			0.20	0.40		24.04		
	5	1	0.34		10129	3.90	n.c		53.77		
K2Cr2O7		2	0.29			2.194	n.c		39.31		
as Cr		3	0.29			2.776	n.c		41.03		
	6	1	2.53		10129	0.91	1.505		28.77		
СТАВ		2	2.18			0.81	1.418		25.38		
		3	3.95			0.76	1.354		27.21		
	7	1	0.83	5)	10129	49.216	n.c		36.54		
Flutriafol		2	1.9	normal procedure		n.c	n.c		26.82		
		3									
	8	1	0.27		10129	2.88	26.201		29.91		
KCN		2	2.26	6)	-	2.94	n.c		28.28		
		3	4.28	0)		2.19	23.07		30.81		
		4	0.21	6)		2.403	18.973		39.09		

¹⁾ pH adjustment from 6.1 failed and the pH was from 9.3 to 5.2 during the adjustment. The final pH was 6.8.

²⁾ The sample was kept frozen from 20.01. to 22.01. where is was defrosted and tested

³⁾ Manual entry of the measured values

 $^{4)}$ Triclosan dissolved in ethanol. Ethanol concentration in the artificial sample and the control was 100 μ L/L. The control with ethanol was used in the calculation of the EC values. The control in block B without ethanol, see the standard window. ⁵⁾ The test mixture contains 80% sample and 20% test suspension.

⁶⁾ Bacteria more than 4 hours old.

<u>Test A</u> 30 min testtid

LUMIStox				Without color correction				With color correction			
			Control 30 min			5000 ((1)	5050 ((1)	lor rrection	5000 ((1)	5050 ((1)	Standard ZnSO4,7H2O
Compound		Replicate	valid	Remarks	Batch No.	EC20 (mg/L)	EC50 (mg/L)	8 8	EC20 (mg/L)	ECS0 (mg/L)	9.67 mg/L
7.004 7020	1	1	1.18		10129	2.09	4.28	N N			27.12
2nSO4,/H2O		2	1.11			1.98	4.17	N N			25.95
as zn		3	2.34		10120	1.70	3.93	N	0.56		20.17
0.004 51120	2	1	0.12		10129	0.56	n.c	Y	0.56	n.c	31.90
CuSO4,5H20		2	0.86			0.72	n.c	Ŷ	0.72	n.c	29.06
as Cu		3	2.73			0.67	n.c	Y	0.67	n.c	-
6 5 6	3	1	1.15		11169	0.24	0.72	N		-	28.70
SDS		2	1.35			0.33	1.00	N			27.64
		3	2.03			0.51	1.28	N			30.20
	4	1	1.24		10129	0.26	0.51	N			22.43
Triclosan 4)		2	0.02			0.32	0.53	N			24.16
		3	0.52			0.27	0.56	N			20.91
	5	1	0.21	6), 7)	10129	1.413	20.73	Y	1.413	20.73	45.88
K2Cr2O7		2	1.70	7)		0.45	12.1	Y	0.56	13.3	38.36
as Cr		3	1.41			1.49	19.2	Y	1.49	19.2	40.86
	6	1	2.31		10129	0.56	0.99	Ν			28.98
СТАВ		2	2.29			0.53	0.95	Ν			28.74
		3	2.11			0.59	0.96	Ν			28.75
	7	1	3.50	5)	10129	n.c	n.c	Ν			45.91
Flutriafol		2	2.75	normal procedure		n.c	n.c	Ν			23.87
		3									
	8	1	6.07		10129	0.37	27.7	Ν			29.51
KCN		2	5.47			0.75	28.1	Ν			31.96
		3	0.80]		1.60	25.1	Ν			38.14
		4	2.61			0.56	16.0	N			38.64

ECLOX						Without color co	orrection	
			Control					Standard
Compound		Doplicato	30 min	Deversite	Batch No	$\Gamma(20)(mg/l)$	$\Gamma(\Gamma(n))$	ZnSO4,7H2O
Compound	1	replicate	2 41	Remarks	10120	1.67	4 17	9.67 mg/L
72504 7420	T	1	2.41		10129	2.11	4.17	19.50
211304,71120		2	1.00			2.11	5.69	27.45
d5 211	2	3	0.55		10120	1.89	4.25	25.21
	2	1	0.43		10129	0.87	n.c	20.00
CuSO4,5H2O		2	0.89			1.14	n.c	22.64
as cu		3	5.96	1)		0.98	11.0	-
		4	2.06	2)		0.24	0.52	28.98
		5	4.14	2)		n.c	n.c	26.07
	3	1	2.70	3)	11169	0.26	0.84	28.45
SDS		2	2.38			0.29	0.75	32.38
		3	1.94			0.50	1.38	29.93
	4	1	0.69		10129	0.31	0.52	26.81
Triclosan 4)		2	3.39			0.31	0.54	20.98
		3	3.13			0.30	0.52	24.04
	5	1	1.29	6), 7)	10129	1.098	13.711	53.77
K2Cr2O7		2	1.39	7)		0.89	21.1	39.31
as Cr		3	1.05	7)		0.65	20.1	41.03
	6	1	2.86		10129	0.56	0.97	28.77
СТАВ		2	0.05			0.55	0.96	25.38
		3	3.20			0.62	0.95	27.21
	7	1	4.28	5)	10129	n.c	n.c	36.54
Flutriafol		2	0.08	normal procedure		n.c	n.c	26.82
		3						
	8	1	0.51		10129	0.94	20.1	29.91
KCN		2	1.15			0.66	n.c	28.28
		3	3.89			0.65	18.6	30.81
		4	2.23			0.39	14.4	39.09

¹⁾ pH adjustment from 6.1 failed and the pH was from 9.3 to 5.2 during the adjustment. The final pH was 6.8.

 $^{2)}$ The sample was kept frozen from 20.01. to 22.01. where is was defrosted and tested

³⁾ Manual entry of the measured values

 $^{\rm 4)}$ Triclosan dissolved in ethanol. Ethanol concentration in the artificial sample and the control was 100 $\mu\text{L/L}.$

The control with ethanol was used in the calculation of the EC values. The control in block B without ethanol, see the standard window.

 $^{\rm 5)}$ The test mixture contains 80% sample and 20% test suspension.

⁶⁾ The control values gained with K2Cr2O7 was replaced with the values from testing the standard as one of the control tubes was lost during the test.

 $^{\rm 7)}$ No measurement below 20 % inhibition. Affects determination of EC20
Batch No. 10129

LUMIStox

No.	Mesurement	% inhibition
1		0.48
2		-0.30
3		3.88
4		1.34
5		1.11
6		6.36
7		9.71
8		7.02
9		4.80

<u>Test B</u>

Batch No.

LUMIStox

No.	Mesurement	% inhibition
1		1.80
2		1.70
3		5.21
4		0.39
5		3.40
6		3.88
7		9.51
8		7.90
9		5.25

10129

Test time: 15 minutes

ECLOX

No.	Mesurement	% inhibition
1		-3.40
2		6.62
3		5.49
4		4.52
5		9.20
6		6.30
7		5.69
8		9.85
9		7.00

Test time: 30 minutes

ECLOX

No.	Mesurement	% inhibition
1		-2.50
2		5.51
3		4.68
4		2.94
5		6.98
6		3.46
7		2.79
8		6.71
9		4.30

Standards for BL100204-67 and BE100204-68 are both valid

Control for BL100204-67 is 3.35 after 15 minutes, but is valid after 30 minutes,

control is valid for BE100204-68

			Test time:	15 minutes			
LUMIStox					_	Validity cho	eck
Start concentration	Replicate	Batch No.	EC20 (mg/L)	EC50 (mg/L)		Standard	Control
~EC 60*2	1	10129	0.32	1.039			2
Actual start conc:	2		0.31	1.113			1
3,4 mgSDS/L	3		0.44	1.678			0
~EC 30*2	1	10129	0.35				1
Actual start conc:	2		0.36				1
1,2 mg SDS/L	3		0.71			17.55	2

Replicate no 3, bacteria batch more than 4 hours old

ECLOX

Test C

Start concentration	Replicate	Batch No.	EC20 (mg/L)	EC50 (mg/L)
~EC 60*2	1	10129	0.37	1.154
Actual start conc:	2		0.35	1.036
3,4 mgSDS/L	3		0.55	1.741
~EC 30*2	1	10129	0.38	
Actual start conc:	2		0.37	
1,2 mg SDS/L	3		0.63	

Replicate no 3, bacteria batch more than 4 hours old

<u>Test C</u>

			Test time:	30 minutes			
LUMIStox					,	Validity che	eck
Start concentration	Replicate	Batch No.	EC20 (mg/L)	EC50 (mg/L)		Standard	Control
~EC 60*2	1	10129	0.25	0.77		25.44	2
Actual start conc:	2		0.26	0.83		23.66	0
3,4 mgSDS/L	3		0.42	1.28		27.03	0
~EC 30*2	1	10129	0.30			26.62	1
Actual start conc:	2		0.27			20.52	1
1,2 mg SDS/L	3		0.55			17.55	4

Replicate no 3, bacteria batch more than 4 hours old

ECLOX

Start concentration	Replicate	Batch No.	EC20 (mg/L)	EC50 (mg/L)
~EC 60*2	1	10129	0.24	0.84
Actual start conc:	2		0.32	0.80
3,4 mgSDS/L	3		0.40	1.23
~EC 30*2	1	10129	0.31	
Actual start conc:	2		0.30	
1,2 mg SDS/L	3		0.70	

StandardControl27.254.3923.872.0828.512.4828.910.2520.653.8918.252.30

2.63 1.68 0.96 1.95 1.27

2.29

0.37 1.58 2.31 0.54 4.57

1.19

2.44 0.69 0.24 1.56 1.26 4.36

Control

Standard

18.25

Replicate no 3, bacteria batch more than 4 hours old

<u>Test D</u>							_	
				Test time:	15 minute	S		_
				Test compound	:	ZnSO4,7H2	O as Zn	
LUMIStox							Validity che	ck
Day No.	Date	Replicates	Batch no.	EC20 (mg/L)	EC50 (mg/L)		Standard	Control
1	19-01-2010	1	10219	3.614	8.837			3.33
	(Test A)	2		3.686	8.581			2.33
		3		3.088	8.189			2.85
2	18-02-2010	1	11169	3.774	8.751			6.81
		2		3.351	8.882			1.52
		3		3.554	7.762			0.69
3	09-03-2010	1	02099	3.373	9.509		16.79	3.00
		2		5.283	11.609		14.93	1.2
		3		4.367	12.282		18.02	5.63

ECLOX

Day No.	Date	Replicates	Batch no.	EC20 (mg/L)	EC50 (mg/L)	
1	19-01-2010	1	10219	3.284	8.555	
	(Test A)	2		3.832	8.537	
		3		3.297	8.177	
2	18-02-2010	1	11169	3.839	8.096	
		2		Data not collected, error in		
		3		3.093	7.612	
3	03-03-2010	1	11169	1.952	5.441	
		2		2.862	6.80	
		3		1.571	5.05	
4		1	02099	3.191	10.234	
		2		5.02	11.858	
		3]	2.324	14.344	
		4		3.501	9.966	

Validity che	ck
Standard	Control
19.5	2.35
	2.05
	1.91
15.12	0.28
	0.22
	6.94
	0.11
	0.55
18.79	6.02
14.95	2.59
10.44	4.15
	2.81

Replicate no. 4 at day 4, bacteria batch more than 4 hours old

Test D							_	
				Test time:	30 minutes			-
				Test compound	1:	ZnSO4,7H2	20 as Zn	
LUMIStox							Validity che	ck
Day No.	Date	Replicates	Batch no.	EC20 (mg/L)	EC50 (mg/L)		Standard	Control
1	19-01-2010	1	10129	2.093	4.283		27.12	1.18
	(Test A)	2		1.984	4.169		25.95	1.11
		3		1.698	3.928		20.17	2.34
2	18-02-2010	1	11169	2.135	4.473		21.69	3.76
		2		2.126	4.642		20.17	0.90
		3		1.864	3.924		31.90	0.21
3	09-03-2010	1	02099	2.369	5.378		16.79	0.07
		2		3.321	6.153		14.93	1.46
		3		2.635	5.417		18.02	4.13

ECLOX

Day No.	Date	Replicates	Batch no.	EC20 (mg/L)	EC50 (mg/L)
1	19-01-2010	1	10219	1.668	4.169
	(Test A)	2		2.112	3.892
		3		1.89	4.234
2	18-02-2010	1	11169	2.43	4.367
		2		Data not colle	cted, error in PO
		3		1.915	4.201
3	03-03-2010	1	11169	1.445	3.244
		2		1.54	3.282
		3		1.206	2.785
4		1	02099	2.499	5.569
		2		3.017	5.932
		3]	2.274	5.06
		4		2.358	5.073

Validity check					
Standard	Control				
19.5	2.41				
27.45	1.88				
25.21	0.55				
15.12	1.22				
31.08	1.94				
30.73	6.37				
29.29	3.07				
33.95	2.31				
18.79	5.45				
14.95	3.75				
10.44	5.36				
21.21	1.14				

Replicate no. 4 at day 4, bacteria batch more than 4 hours old

						Test time 15 mint	
FCLOX						Temperature	23° C
Compo	und	1: ZnSO4, 7H2O (as	Zn)	_	Batch No.:	10129)
1. repli	cate	9		_			-
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	83	3.4 mg/L	20%
	3	0.2	0.3	0.5	96	8.5 mg/L	50%
	4	0.2	no	0.8	99	13.6 mg/L	80%
2. repli	cate				1		
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	82	3.4 mg/L	20%
-	3	0.2	0.3	0.5	95	8.5 mg/L	50%
	4	0.2	no	0.8	97	13.6 mg/L	80%
3. repli	cate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	85	3.4 mg/L	20%
	3	0.2	0.3	0.5	96	8.5 mg/L	50%
	4	0.2	no	0.8	99	13.6 mg/L	80%
-			•				
Compo	und	2: SDS			Batch No.:	10129	
1. repli	cate	2		_			_
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	24	0.56 mg/L	20%
	3	0.2	0.3	0.5	47	1.4 mg/L	50%
	4	0.2	no	0.8	58	2.24 mg/L	80%
2. repli	cate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	24	0.56 mg/L	20%
	3	0.2	0.3	0.5	44	1.4 mg/L	50%
	4	0.2	no	0.8	54	2.24 mg/L	80%
3. repli	cate						
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	23	0.56 mg/L	20%
l					-		

Test time 15 minutes

3 4

0.2

0.2

0.3

no

0.5

0.8

44

53

1.4 mg/L

2.24 mg/L

50%

80%

						Test time 15 mint	iles
FCLOX						Temperature	16° C
Compo	und	1: ZnSO4, 7H2O (as	Zn)	-	Batch No.:	10129)
1. repli	cate	2		-			-
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	49	3.4 mg/L	20%
	3	0.2	0.3	0.5	82	8.5 mg/L	50%
	4	0.2	no	0.8	90	13.6 mg/L	80%
							-
2. repli	cate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	47	3.4 mg/L	20%
	3	0.2	0.3	0.5	82	8.5 mg/L	50%
	4	0.2	no	0.8	91	13.6 mg/L	80%
3. repli	cate	1					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	50	3.4 mg/L	20%
	3	0.2	0.3	0.5	84	8.5 mg/L	50%
	4	0.2	no	0.8	92	13.6 mg/L	80%
							-
Compo	und	2: SDS			Batch No.:	10129)
1. repli	cate			-			-
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	34	0.56 mg/L	20%
	3	0.2	0.3	0.5	60	1.4 mg/L	50%
	4	0.2	no	0.8	73	2.24 mg/L	80%
2. repli	cate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	31	0.56 mg/L	20%
	3	0.2	0.3	0.5	62	1.4 mg/L	50%
	4	0.2	no	0.8	75	2.24 mg/L	80%
3. repli	cate						
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	32	0.56 mg/L	20%
h					-		

Test time 15 minutes

<u>Test E</u>

3 4

0.2

0.2

0.3

no

0.5

0.8

59

72

1.4 mg/L

2.24 mg/L

50%

80%

						Temperature	5° C
Compo	ninc	11. 7nSO4 7H2O (as	s 7n)	-	Batch No :	1012	9
1 renli	icate	<u> </u>	5 211)	_	Duten No	1012	
Tube	cutt	Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	11	3.4 mg/L	20%
	3	0.2	0.3	0.5	26	8.5 mg/L	50%
	4	0.2	no	0.8	34	13.6 mg/L	80%
			•	*	•	•	
2. repli	icate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	-14	3.4 mg/L	20%
	3	0.2	0.3	0.5	8	8.5 mg/L	50%
	4	0.2	no	0.8	15	13.6 mg/L	80%
						•	
3. repli	icate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	19	3.4 mg/L	20%
	3	0.2	0.3	0.5	32	8.5 mg/L	50%
	4	0.2	no	0.8	46	13.6 mg/L	80%
-				_			
Compo	ounc	2: SDS			Batch No.:	1012	.9
1. repli	icate	2					
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	44	0.56 mg/L	20%
	3	0.2	0.3	0.5	70	1.4 mg/L	50%
	4	0.2	no	0.8	77	2.24 mg/L	80%
2. repli	icate		-				
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.
	2	0.2	0.6	0.2	42	0.56 mg/L	20%
	3	0.2	0.3	0.5	71	1.4 mg/L	50%
	4	0.2	no	0.8	76	2.24 mg/L	80%
3. repli	icate			-	-	-	
Tube		Bacteria susp. (mL)	2% NaCl (mL)	Sample (mL)	% inhibition	Sample conc.	App. sample conc.
	1	0.2	0.8	no	n.a.	non-toxic ref.	n.a.

Test time 15 minutes Temperatu

2 3 4 0.2 0.6 0.2 16 0.56 mg/L 20% 0.2 0.3 0.5 40 1.4 mg/L 50% 0.2 no 0.8 52 2.24 mg/L 80%

		Test time:	15 minutes
	Test compoun	d:	SDS
Conc ~EC 20	Actual start c	onc:	0,80 mg/L

Temperatures are measured in reference hole in termoblock

LUMIStox

Temp. (°C)	Replicate	Batch No.	% inhibition
14.0	1	10129	24.20
Block A	2		21.82
	3		20.49
15.4	1		27.18
Block B	2		23.00
	3		17.15
16.1	1		13.19
Block C	2		17.60
	3		15.83

Validity check				
Standard	Control			
	2.02			
19.42	2.52			
	2.72			
	2.52			
	0.02			
	1.98			
18.96	1.33			
17.39	0.13			
	0.87			

ECLOX

Temp. (°C)	Replicate	Batch No.	% inhibition
14.0	1	10129	23.25
Block A	2		19.38
	3		9.82
15.4	1		24.67
Block B	2		16.73
	3		18.43
16.1	1		20.83
Block C	2		17.34
	3		15.99

Standard	Control
	0.92
	2.85
	0.90
	2.06
	3.01
	1.54
	1.00
	2.64
	1.07

		Test time:	30 minutes
	Test compoun	d:	SDS
Conc ~EC 20	Actual start c	onc:	0,80 mg/L

Temperatures are measured in reference hole in termoblock

LUMIStox

Temp. (°C)	Replicate	Batch No.	% inhibition
14.0	1	10129	30.44
Block A	2		29.09
	3		26.22
15.4	1		31.43
Block B	2		29.66
	3		20.48
16.1	1		19.74
Block C	2		19.97
	3		18.53

Standard	Control
22.69	2.47
19.42	0.05
24.55	2.64
20.36	1.29
26.73	0.99
31.2	0.20
18.96	0.58
17.39	1.29
22.11	0.17

ECLOX

Temp. (°C)	Replicate	Batch No.	% inhibition
14.0	1	10129	30.31
Block A	2		24.75
	3		18.17
15.4	1		27.64
Block B	2		20.84
	3		24.81
16.1	1		23.13
Block C	2		19.38
	3		20.06

Standard	Control
Jtanuaru	Control
21.00	1.06
21.23	0.14
21.61	1.27
21.96	2.15
26.04	4.08
27.49	2.62
23.61	1.52
25.73	1.30
23.04	0.45

	Test time:	15 minutes	
	Test compound:		SDS
Conc ~EC 20	Actual start conc:		0.80

LUMIStox

рН	Replicate	Batch No.	% inhibition
6.0	1		22.92
	2		16.41
	3		14.67
7.0	1		24.41
	2	10129	17.64
	3		14.09
8.5	1		23.95
	2		20.16
	3		12.38

ECLOX

рН	Replicate	Batch No.	% inhibition
6.0	1		23.50
	2		18.38
	3		9.60
7.0	1		18.49
	2	10129	18.19
	3		9.65
8.5	1		19.56
	2		16.76
	3		10.46

Validity check

/	
Standard	Control
	1.95
	1.27
17.55	2.29
	1.95
	1.27
17.55	2.29
	1.95
	1.27
17.55	2.29

Validity check

Standard	Control
	0.54
	4.57
18.25	1.19
	0.54
	4.57
18.25	1.19
	0.54
	4.57
18.25	1.19

	Test time:	30 minutes	
	Test compound:		SDS
Conc ~EC 20	Actual start conc:		0.80

LUMIStox

рН	Replicate	Batch No.	% inhibition
6.0	1		31.91
	2		23.18
	3		18.69
7.0	1		28.31
	2	10129	24.45
	3		14.09
8.5	1		28.25
	2		26.49
	3		16.96

ECLOX

рН	Replicate	Batch No.	% inhibition
6.0	1		29.20
	2		25.52
	3		12.83
7.0	1		25.31
	2	10129	23.84
	3		10.45
8.5	1		27.00
	2		23.30
	3		12.33

Validity check

Standard	Control
26.62	1.56
20.52	1.26
17.55	4.36
26.62	1.56
20.52	1.26
17.55	4.36
26.62	1.56
20.52	1.26
17.55	4.36

Validity check

Standard	Control
28.91	0.25
20.65	3.89
18.25	2.30
28.91	0.25
20.65	3.89
18.25	2.30
28.91	0.25
20.65	3.89
18.25	2.30

	Test time: 15 minutes	
	Test compound: SDS	
Conc ~EC 20	Actual start conc: 0,80 mg/L	

LUMIStox

Color correction

			Without	With
Color conc.	Replicate	Batch No.	% inhibition	% inhibition
0,2 % dye	1	10129	23.28	20.58
Sample	2		15.35	15.35
	3		18.92	18.92
6,25 % dye	1]	36.95	24.16
Sample	2]	28.83	16.88
	3		33.84	22.17
12,5 % dye	1]	45.83	24.94
Sample	2]	39.64	18.94
	3]	43.89	24.50
0,2 % dye	1		0.45	0.45
No sample	2]	-3.19	-6.32
	3		7.29	7.29
6,25 % dye	1		14.56	-2.52
No sample	2]	13.13	-1.30
	3		19.23	4.12
12,5 % dye	1]	30.61	5.31
No sample	2]	29.1	2.28
	3]	30.54	4.99
No color	1		22.29	
Sample	2		17.09	
	3		19.19	

Validity check			
Standard	Control		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		
	1.06		
	0.15		
	3.84		

The control value for replicate 2 changes to 3.22 when using color correction

			Color correction	
ECLOX			Without	With
Color conc.	Replicate	Batch No.	% inhibition	% inhibition
0,2 % dye	1	10129	18.23	21.51
Sample	2]	12.61	16.12
	3		23.27	26.35
6,25 % dye	1]	25.49	17.03
Sample	2]	24.48	15.91
	3		30.12	22.19
12,5 % dye	1]	33.15	17.59
Sample	2]	35.22	20.14
	3]	41.99	28.49
0,2 % dye	1]	-1.08	2.98
No sample	2]	-1.39	2.68
	3]	0.99	4.97
6,25 % dye	1]	11.06	0.97
No sample	2]	15.73	6.17
	3	1	12.13	2.16
12,5 % dye	1	1	20.55	2.05
No sample	2]	22.30	4.21
	3]	18.62	-0.32
No color	1	1	15.40	
Sample	2	1	15.20	
	3	1	20.96	

Standard	Control
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72
	2.16
	2.46
	1.72

	Test time:	30 minutes
	Test compoun	d: SDS
Conc ~EC 20	Actual start conc: 0,80 mg/L	

LUMIStox

Color correction Without With Replicate Color conc. Batch No. % inhibition % inhibition 0,2 % dye 10129 29.93 27.92 1 2 20.95 Sample 20.95 3 21.83 21.83 6,25 % dye 1 40.97 29.94 2 32.79 21.48 Sample 3 34.19 22.74 12,5 % dye 1 49.41 31.87 2 41.5 21.35 Sample 3 44.75 25.63 1 0,2 % dye 2.55 -0.39 2 No sample -3.94 -3.94 3 2.00 2.00 6,25 % dye 1 14.4 -2.03 2 -4.58 10.63 No sample 3 -1.11 14.77 12,5 % dye 1 28.18 0.48 2 -0.14 25.88 No sample 3 27.73 2.43 No color 1 27.26 2 Sample 19.62 3 22.14

Validity check			
Standard	Control		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		
27.62	0.16		
25.17	5.05		
26.13	3.35		

			Color correction	
ECLOX			Without	With
Color conc.	Replicate	Batch No.	% inhibition	% inhibition
0,2 % dye	1	10129	21.33	24.49
Sample	2		20.49	23.68
	3		30.44	33.23
6,25 % dye	1]	29.23	21.20
Sample	2]	30.31	22.40
	3]	37.08	29.94
12,5 % dye	1		35.75	20.79
Sample	2		38.20	23.81
	3		44.00	30.96
0,2 % dye	1		-4.91	-0.70
No sample	2]	1.44	5.40
	3]	2.65	6.56
6,25 % dye	1]	8.49	-1.90
No sample	2		13.66	3.86
	3		11.27	1.20
12,5 % dye	1		16.56	-2.86
No sample	2]	24.08	6.41
	3		18.5	-0.47
No color	1		18.24	
Sample	2		21.73	
	3		25.46	

Standard	Control
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23
23.88	1.60
27.30	4.83
27.15	2.23

<u>IESLI</u>		
	Test time: 15 minutes	
	Test compound:	SDS
Conc ~EC 20	Actual start conc:	0.80 mg/L

LUMIStox				Color correction Witout	With
Turbide conc.	SDS	Replicate	Batch No.	% inhibition	% inhibition
No	Yes	1	10129	6.71	6.71
		2	Ť	21.99	19.44
		3	Ī	10.79	5.31
		4]	11.42	11.42
0,05 g BaSO4/L	Yes	1		13.23	3.12
		2	I	16.26	9.79
		3	I	12.98	6.55
		4		14.48	8.31
0,10 g BaSO4/L	Yes	1		12.56	-1.19
		2	I	18.8	9.49
		3		11.17	-2.05
		4		10.75	-2.06
0,20 g BaSO4/L	Yes	1		8.56	-16.54
		2	I	16.6	-4.23
		3	I	11.49	-13.51
		4	I	12.74	-12.07
Blind	No	1		1.80	-10.09
0,05 g BaSO4/L		2	I	3.46	-6.89
		3	I	0.64	-10.27
		4		1.53	-6.85
Blind	No	1		-2.77	-21.12
0,10 g BaSO4/L		2	1	1.22	-13.07
		3	1	0.61	-18.61
		4		-1.24	-18.26
Blind	No	1		-5.96	-36.77
0,20 g BaSO4/L		2	1	-0.20	-27.2
		3	1	-0.82	-38.15
		4		-0.74	-35.7

Validity cheo	:k
Standard	Control
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62
	2.16
	3.35
18.26	2.40
	0.62

Replicate no. 4, bacteria batch more than 4 hours old

Color correction

ECLOX				Witout	With
Turbide conc.	SDS	Replicate	Batch No.	% inhibition	% inhibition
No	Yes	1	10129	9.2	
		2		13.11	
		3		9.5	
		4		13.3	
0,05 g BaSO4/L	Yes	1	ļ	12.25	15.25
		2		12.05	15.05
		3		11.36	14.39
		4		13.46	16.41
0,10 g BaSO4/L	Yes	1		13.48	17.54
		2		16.77	20.67
		3		10.25	14.46
		4		12.8	16.89
0,20 g BaSO4/L	Yes	1]	12.52	15.1
		2		8.72	11.41
		3		11.95	14.55
		4		8.18	10.89
Blind	No	1		-3.79	-0.25
0,05 g BaSO4/L		2		-2.92	0.59
		3	T	-7.51	-3.84
		4	Ţ	1.21	4.58
Blind	No	1		0.44	5.11
0,10 g BaSO4/L		2	T	-7.95	-2.89
		3	1	-8.41	-3.32
		4]	2.27	6.89
Blind	No	1	1	-2.61	0.42
0,20 g BaSO4/L		2	1	-13.04	-9.71
-		3	1	-10.46	-7.2
		4	t	3.6	6.44

Validity cheo	:k
Standard	Control
	0.58
	1.42
19.76	1.32
	3.3
	0.58
	1.42
19.76	1.32
	3.3
	0.58
	1.42
19.76	1.32
	3.3
	0.58
	1.42
19.76	1.32
	3.3
	0.58
	1.42
19.76	1.32
	3.3
	0.58
	1.42
19.76	1.32
	3.3

19.76

0.58 1.42

1.32 3.3

Replicate no. 4, bacteria batch more than 4 hours old

<u>Test I</u>		
	Test time: 30 min	utes
	Test compound:	SDS
Conc ~EC 20	Actual start conc:	0.80 mg/l

				Color correction	
LUMIStox				Witout	With
Turbide conc.	SDS	Replicate	Batch No.	% inhibition	% inhibition
No	Yes	1	10129	10.47	10.47
		2		25.25	25.25
		3		11.20	11.20
		4		14.64	14.64
0,05 g BaSO4/L	Yes	1		15.23	8.88
		2		17.74	11.84
		3		14.46	11.77
		4		17.55	10.61
0,10 g BaSO4/L	Yes	1		17.29	7.49
		2		20.12	12.55
		3		12.01	2.67
		4		10.54	2.52
0,20 g BaSO4/L	Yes	1		10.07	-7.96
		2		19.64	-0.3
		3		12.22	-1.96
		4		12.37	-2.52
Blind	No	1		0.61	-12.03
0,05 g BaSO4/L		2		-0.45	-9.93
		3		0.08	-9.95
		4		0.04	-7.9
Blind	No	1		-4.17	-17.59
0,10 g BaSO4/L		2		-1.37	-16.39
		3		-4.43	-20.13
		4		1.19	-12.26
Blind	No	1		-8.60	-31.21
0,20 g BaSO4/L		2		-5.92	-32.29
		3		-7.12	-34.22
		4		-0.35	-23.31

Validity chec	k
Standard	Control
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76
25.37	3.27
23.22	0.36
18.26	0.37
24.96	1.76

Replicate no. 4, bacteria batch more than 4 hours old

Color correction

ECLOX				Witout	With
Turbide conc.	SDS	Replicate	Batch No.	% inhibition	% inhibition
No	Yes	1	10129	15.89	
		2	I	23.03	
		3		12.96	
		4		13.85	
0,05 g BaSO4/L	Yes	1		12.76	15.74
		2		18.86	21.63
		3		15.02	17.92
		4		14.52	17.44
0,10 g BaSO4/L	Yes	1		18.52	22.34
		2		20.62	24.34
		3		16.43	20.35
		4		14.72	18.72
0,20 g BaSO4/L	Yes	1		15.51	18.00
		2		17.54	19.97
		3		15.25	17.75
		4		8.18	10.89
Blind	No	1		-2.81	0.70
0,05 g BaSO4/L		2		-0.71	2.73
		3	ļ	-5.42	-1.82
		4		-1.42	2.04
Blind	No	1	ļ	0.75	5.41
0,10 g BaSO4/L		2	ļ	-3.94	0.94
		3	ļ	-10.21	-5.04
		4		0.28	4.96
Blind	No	1	ļ	-1.86	1.14
0,20 g BaSO4/L		2	ļ	-4.19	-1.12
		3	ļ	-11.95	-8.65
		4		0.71	3.64

Validity chec	k
Standard	Control
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89
25.01	1.34
24.37	2.29
19.76	0.28
22.18	7.89

Replicate no. 4, bacteria batch more than 4 hours old

Bacteria batches as in Test A

Conc ~EC 20

Test time: 15 minutes

LUMIStox				Test time:	15 minutes
Industrial wast	tewater				
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	5.11
			2		-5.60
			3		4.03
СТАВ	2% NaCl MilliQ	1.20	1		7.08
	water		2		10.54
			3		23.74
СТАВ	Waste water	1.20	1		16.24
			2		9.99
			3		16.09
Cr	2% NaCl MilliQ	2.80	1		18.36
	water		2		7.34
			3		11.80
Cr	Waste water	2.80	1		7.90
			2		-2.07
			3		5.79
SDS	2% NaCl MilliQ	0.80	1		14.01
	water		2		17.28
			3		21.25
SDS	Waste water	0.80	1		11.82
			2		10.77
			3		13.19
Triclosan	2% NaCl MilliQ	0.60	1		21.22
	water		2		31.29
			3		38.5
Triclosan	Waste water	0.60	1		27.63
			2		35.24
			3		41.29
Zn	2% NaCl MilliQ	4.00	1		9.84
	water		2		7.55
			3		9.80
Zn	Waste water	4.00	1	ļ	11.62
			2		4.03
			3		5.16

Standard	Control
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	3.30
	1.08
	0.20
	1.09
	1.00
	3.20
	1.08
	0.89
	1 04
	2.63
	0.89
	1.04
	2.63

Bacteria batches as in Test A Conc ~EC 20_____

LUMIStox				Test time:	15 minutes
Domestic was	tewater				_
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	-6.99
			2		-15.41
			3		-1.95
СТАВ	2% NaCl MilliQ	1.20	1		19.00
	water		2		17.07
			3		20.20
СТАВ	Waste water	1.20	1	-	13.69
			2	-	9.63
			3	-	18.67
Cr	2% NaCl MilliQ	2.80	1	-	17.12
	water		2	-	7.38
			3	-	13.11
Cr	Waste water	2.80	1	-	-6.18
			2	-	-13.45
			3	-	0.93
SDS	2% NaCl MilliQ	0.80	1	-	22.11
	water		2	-	15.82
			3		21.95
SDS	Waste water	0.80	1		13.75
			2	-	8.96
			3	-	16.85
Triclosan	2% NaCl MilliQ	0.60	1	-	34.88
	water		2		36.36
			3		43.91
Triclosan	Waste water	0.60	1		22.66
			2		31.79
			3	-	41.74
Zn	2% NaCl MilliQ	4.00	1		7.69
	water		2		7.84
			3		9.85
Zn	Waste water	4.00	1		4.98
			2		-0.78
			3		3.74

Standard	Control
Stanuaru	1 79
	0.16
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	1.78
	0.16
	2.48
	3.03
	1.58
	0.38
	3.03
	1.58
	0.38

Bacteria batches as in Test A Conc ~EC 20

1

			Test time:	15 minutes
tewater				
Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
Waste water		1	10129	2.80
		2		-2.19
		3		3.93
2% NaCl MilliQ	1.20	1		12.15
water		2		11.28
		3		22.33
Waste water	1.20	1		15.49
		2		13.83
		3		16.11
2% NaCl MilliQ	2.80	1		20.53
water		2		10.17
		3		14.93
Waste water	2.80	1		2.86
		2		-1.04
		3		3.77
2% NaCl MilliQ	0.80	1		13.06
water		2		12.89
		3		22.81
Waste water	0.80	1		13.76
		2		7.74
		3		11.75
2% NaCl MilliQ	0.60	1		23.27
water		2		27.56
		3		36.25
Waste water	0.60	1		27.12
		2		31.82
		3		41.76
2% NaCl MilliQ	4.00	1		7.56
water		2		11.01
		3]	8.76
Waste water	4.00	1]	6.16
		2]	5.27
		3]	4.00
	tewater Matrix Waste water 2% NaCl MilliQ water Waste water 2% NaCl MilliQ water Waste water Waste water	tewaterMatrixConc (mg/L)Waste water1.202% NaCl MilliQ water1.20Waste water1.202% NaCl MilliQ water2.80Waste water2.80Waste water2.80Waste water0.80Waste water0.80Waste water0.80Waste water0.60Waste water0.60	Matrix Conc (mg/L) Replicate Waste water 1 2% NaCl MilliQ 1.20 water 1 water 1 Waste water 1.20 Waste water 2.80 Waste water 3 Waste wat	Test time: tewater Itest time: Matrix Conc (mg/L) Replicate Batch No. Waste water 1 10129 2 Waste water 1 10129 2% NaCl MilliQ 1.20 1 water 2 1 Waste water 1.20 1 Waste water 1.20 1 Waste water 2.80 1 water 2.80 1 water 2.80 1 Waste water 2.80 1 Waste water 0.80 1 water 2.80 1 Waste water 0.80 1 Waste water 0.80 1 water 3 2 Waste water 0.60 1 water 3 3 Waste water 0.60 1 water 3 3 Waste water 0.60 1

Validity check				
Standard	Control			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	2.39			
	1.37			
	0.25			
	3.45			
	0.11			
	2.18			
	3.45			
	0.11			
	2.18			

Bacteria batches as in Test A Conc ~EC 20_____

ECLOX		Test time:	: 15 minutes		
Domestic was	tewater				
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	-4.68
			2		-8.26
			3		-4.18
СТАВ	2% NaCl MilliQ	1.20	1		20.33
	water		2		23.59
			3		21.49
СТАВ	Waste water	1.20	1		13.45
			2		14.12
			3		14.12
Cr	2% NaCl MilliQ	2.80	1		13.36
	water		2		11.03
			3		8.04
Cr	Waste water	2.80	1		-6.98
			2		-9.15
			3		-3.52
SDS	2% NaCl MilliQ	0.80	1		20.11
	water		2		19.36
			3		22.60
SDS	Waste water	0.80	1		15.27
			2		12.23
			3		16.82
Triclosan	2% NaCl MilliQ	0.60	1		31.50
	water		2		39.09
			3		42.04
Triclosan	Waste water	0.60	1		23.94
			2		33.30
			3		42.68
Zn	2% NaCl MilliQ	4.00	1		8.80
	water		2		11.22
			3]	5.51
Zn	Waste water	4.00	1]	1.50
			2		6.11
			3		1.80

Validity check				
Standard	Control			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	2.93			
	4.06			
	1.93			
19.54	1.89			
	1.44			
	1.58			
19.54	1.89			
	1.44			
	1.58			

Bacteria batches as in Test A Conc ~EC 20

LUMIStox				Test time:	30 minutes
Industrial was	tewater				
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	3.26
			2		-10.55
			3		-1.44
СТАВ	2% NaCl MilliQ	1.20	1		12.00
	water		2		14.36
			3		40.32
СТАВ	Waste water	1.20	1		16.71
			2		10.46
			3		17.84
Cr	2% NaCl MilliQ	2.80	1		30.84
	water		2		20.02
			3		21.73
Cr	Waste water	2.80	1		5.23
			2		-7.27
			3		-1.26
SDS	2% NaCl MilliQ	0.80	1		21.01
	water		2		21.23
			3		26.19
SDS	Waste water	0.80	1		8.68
			2		2.43
			3		7.83
Triclosan	2% NaCl MilliQ	0.60	1		8.58
	water		2		12.01
			3		21.98
Triclosan	Waste water	0.60	1		16.63
			2		16.80
			3		26.78
Zn	2% NaCl MilliQ	4.00	1	ļ	21.37
	water		2	ļ	20.15
			3	ļ	20.39
Zn	Waste water	4.00	1		17.45
			2		4.54
			3		4.51

Validity check	Validity check				
Standard	Control				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	0.34				
21.88	0.56				
23.12	1.84				
24.03	2.57				
21.88	1.88				
23.12	2.18				
24.03	2.57				
21.88	1.88				
23.12	2.18				

Bacteria batches as in Test A Conc ~EC 20

_

LUMIStox				Test time:	30 minutes
Domestic was	tewater				
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	-5.33
			2		-13.87
			3		-0.57
СТАВ	2% NaCl MilliQ	1.20	1		30.79
	water		2		33.05
			3		31.21
СТАВ	Waste water	1.20	1		16.07
			2		11.34
			3		22.45
Cr	2% NaCl MilliQ	2.80	1		27.22
	water		2		19.57
			3		20.81
Cr	Waste water	2.80	1		-2.95
			2		-10.91
			3		4.47
SDS	2% NaCl MilliQ	0.80	1		28.21
	water		2		21.70
			3		26.86
SDS	Waste water	0.80	1		16.84
			2		13.24
			3		19.25
Triclosan	2% NaCl MilliQ	0.60	1		17.26
	water		2		18.71
			3		25.61
Triclosan	Waste water	0.60	1		2.35
			2		9.61
			3		23.02
Zn	2% NaCl MilliQ	4.00	1		19.64
	water		2		22.85
			3		19.64
Zn	Waste water	4.00	1		17.22
			2		19.12
			3		15.73

Validity check	Validity check					
Standard	Control					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	3.15					
24.59	0.79					
21.59	4.63					
24.62	0.55					
24.59	0.99					
21.59	1.76					
24.62	0.55					
24.59	0.99					
21.59	1.76					

Bacteria batches as in Test A Conc ~EC 20

٦

ECLOX				Test time:	30 minutes
Industrial was	tewater	-	-		
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	1.28
			2		-8.03
			3		-3.02
СТАВ	2% NaCl MilliQ	1.20	1		14.38
	water		2		15.54
			3		38.51
СТАВ	Waste water	1.20	1		15.14
			2		12.93
			3		13.44
Cr	2% NaCl MilliQ	2.80	1		31.51
	water		2		21.50
			3		22.45
Cr	Waste water	2.80	1		-0.24
			2		-5.82
			3		-4.78
SDS	2% NaCl MilliQ	0.80	1		20.09
	water		2		16.86
			3		25.34
SDS	Waste water	0.80	1		11.21
			2		4.83
			3		5.75
Triclosan	2% NaCl MilliQ	0.60	1		9.51
	water		2		11.85
			3		18.87
Triclosan	Waste water	0.60	1		15.71
			2		14.30
			3		26.74
Zn	2% NaCl MilliQ	4.00	1		21.45
	water		2		22.66
_			3	ļ	21.27
Zn	Waste water	4.00	1		10.29
			2		2.68
			3		1.69

Validity check	Validity check				
Standard	Control				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	1.50				
21.63	2.86				
25.82	1.48				
24.20	2.46				
21.63	0.19				
25.82	1.48				
24.20	2.46				
21.63	0.19				
25.82	1.48				

Bacteria batches as in Test A Conc ~EC 20_____

ECLOX				Test time:	30 minutes
Domestic was	tewater				
Compound	Matrix	Conc (mg/L)	Replicate	Batch No.	% inhibition
No	Waste water		1	10129	-2.82
			2		-9.02
			3		-4.11
СТАВ	2% NaCl MilliQ	1.20	1		33.91
	water		2		35.35
			3		32.36
СТАВ	Waste water	1.20	1		15.93
			2		14.68
			3		18.99
Cr	2% NaCl MilliQ	2.80	1	-	27.11
	water		2	-	21.85
			3	-	17.81
Cr	Waste water	2.80	1		-6.59
			2		-8.86
			3		-0.34
SDS	2% NaCl MilliQ	0.80	1		22.18
	water		2		23.80
			3		26.25
SDS	Waste water	0.80	1	-	15.50
			2	-	14.00
			3		18.91
Triclosan	2% NaCl MilliQ	0.60	1		14.08
	water		2		20.60
			3		27.26
Triclosan	Waste water	0.60	1	-	2.66
			2	-	12.40
			3		23.20
Zn	2% NaCl MilliQ	4.00	1	4	18.18
	water		2	4	21.95
			3		19.68
Zn	Waste water	4.00	1		14.09
			2		18.80
			3		17.72

Validity check	
Standard	Control
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	0.89
24.40	4.5
24.53	1.86
19.54	2.66
24.40	3.02
24.53	1.05
19.54	2.66
24.40	3.02
24.53	1.05

		Bacteria batches as in Test J		
		Mark test time:	15 minutes	
LUMIStox				
Wastewater	Replicate	Batch No.	EC20 (mg/L)	EC50 (mg/L)
Industrial	1	10129	n.c.	n.c.
	2		n.c.	n.c.
	3		n.c.	n.c.
Domestic	1	10129	n.c.	n.c.
	2		n.c.	n.c.

ECLOX

Wastewater	Replicate	Batch No.		EC20 (mg/L)	EC50 (mg/L)
Industrial	1		10129	n.c.	n.c.
	2			n.c.	n.c.
Domestic	1		10129	n.c.	n.c.
	2			n.c.	n.c.

Validity check		
Standard	Control	
-2.71	3.13	
	2.83	
	4.8	
	1.66	
	4.04	

Standard	Control
-3.77	2.35
	5.39
	3.67
	2.83

<u>Test K</u>

		Bacteria batches as in Test J			
		Mark test time	e:	30 minutes	
LUMIStox					
Wastewater	Replicate	Batch No.		EC20 (mg/L)	EC50 (mg/L)
Industrial	1	10:	129	n.c.	n.c.
	2			n.c.	n.c.
	3			n.c.	n.c.
Domestic	1	102	129	n.c.	n.c.
	2			n.c.	n.c.

Validity ch

Standard	Control
-2.71	3.44
25.27	2.70
25.14	5.42
38.63	0.78
33.46	0.67

ECLOX

Wastewater	Replicate	Batch No.		EC20 (mg/L)	EC50 (mg/L)
Industrial	1		10129	n.c.	n.c.
	2			n.c.	n.c.
Domestic	1		10129	n.c.	n.c.
	2			n.c.	n.c.

Standard	Control
-3.77	3.26
28.71	4.10
33.63	2.47
31.55	3.31

n.c. Not calculated. No toxic inhibition.

Compound 1	Mark test time:	15 minutes
	Test compound 1:	SDS
Conc ~EC 20	Actual start conc:	0.80 mg/L

LUMIStox			LL100205-69	LL100205-70	LL100205-71
Cuvette	Replicate	Batch No.	% inhibition	% inhibition	% inhibition
Glass	1		23.17	20.02	14.82
	2		22.23	20.55	16.86
	3	10129	23.37	20.43	15.53
Plastic	1		20.87	19.15	13.87
	2		25.43	22.56	17.38
	3	I	27.66	24.07	12.74

Compound 2	Mark test time:	15 minutes
	Test compound 2:	Zn
Conc ~EC 20	Actual start conc:	4.00 mg/L

LUMIStox			LL100205-69	LL100205-70	LL100205-71
Cuvette	Replicate	Batch No.	% inhibition	% inhibition	% inhibition
Glass	1		8.64	8.24	8.02
	2	T	10.06	6.44	5.31
	3	10129	9.19	10.14	5.84
Plastic	1		8.01	11.63	4.33
	2	T	10.61	14.15	7.03
	3	Ĩ	9.08	13.83	7.94

Validity check					
LL100205-6	LL100205-69		LL100205-70		71
Standard	ndard Control Standa		Control	Standard	Control
	0.78		0.12		0.26
	0.78		0.12		0.26
	0.78		0.12		0.26
	1.33		1.33		2.16
	1.33		1.33		2.16
	1.33		1.33		2.16

LL100205-6	LL100205-69		LL100205-70		71
Standard	Control	Standard	Control	Standard	Control
	0.78		0.12		0.26
	0.78		0.12	0.12	
	0.78		0.12		0.26
	1.33		1.33		2.16
	1.33		1.33		2.16
	1.33		1.33		2.16

Compound 1	Mark test time:	30 minutes
	Test compound 1:	SDS
Conc ~EC 20	Actual start conc: 0.80 mg/L	

LUMIStox			LL100205-69	LL100205-70	LL100205-71
Cuvette	Replicate	Batch No.	% inhibition	% inhibition	% inhibition
Glass	1	1		25.22	19.77
	2	Ι	27.71	25.56	20.20
	3	10129	29.43	26.82	18.37
Plastic	1		26.09	23.59	16.88
	2	Ι	30.13	26.42	20.48
	3	T	30.52	27.09	15.37

LL100205-69		LL100205-70		LL100205-71	
Standard	Control	Standard	Control	Standard	Control
28.21	0.52	21.34	0.18	20.77	0.89
28.21	0.52	21.34	0.18	20.77	0.89
28.21	0.52	21.34	0.18	20.77	0.89
28.21	1.78	21.34	1.52	20.77	1.79
28.21	1.78	21.34	1.52	20.77	1.79
28.21	1.78	21.34	1.52	20.77	1.79

Compound 2	Mark test time:	30 minutes
	Test compound 2:	Zn
Conc ~EC 20	Actual start conc:	4.00 mg/L

% inhibition
17.94
15.60
14.90
16.02
19.15
16.05

LL100205-6	59	LL100205-70		LL100205-71	
Standard	Control	Standard	Control	Standard	Control
28.21	0.52	21.34	0.18	20.77	0.89
28.21	0.52	21.34	0.18	20.77	0.89
28.21	0.52	21.34	0.18	20.77	0.89
28.21	1.78	21.34	1.52	20.77	1.79
28.21	1.78	21.34	1.52	20.77	1.79
28.21	1.78	21.34	1.52	20.77	1.79

APPENDIX 7

Amendment and deviation reports for test

,

Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the format:

.

Signature ETV Canada	Sin Surger	some frog
Date	e12/5/61	10/2/5/61
Signature Battelle AMS QM	2777 7 S.J.	Mar Marie
Date	14 A.S.	2123
Signature verification responsible	The sources	, The surger
Date	6/5 2010	2010
Signature test re- sponsible	Calen C.	Colori -
Date	015/9	01-54
Correc- tíve action, if anv	None	None
Impact assess- ment	The Test A eval- uation for the heavy metal cat- egory will be based on one fewer compound. However, results for two other heavy metals (Zn and Cr) will still be performed and should adequate- ly represent per- formance for the heavy metal cat- ector.	The Test A eval- uations for the organic pesticide category will not be completed. Performance will still be evaluated for organic com- pounds by testing with Triclosan and the deter- gents.
Cause	Precipitation was observed. Not toxic at concentration with no precipitation. Fro- zen samples very different from fresh samples. Inaccurate pH adjustment gave different toxicity even when final pH was identical.	Flutriatol was not sufficiently toxic at concentrations with no precipitation.
Deviation	CuSO4 testing was not com- pleted.	Flutriafol testing- was not com- pleted.
Experiment label Test Plan	685 97	Test A
Dev. No.		N

 $\mathbf{c}_{\mathbf{i}}$

Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the format:

٢

Signature ETV Canada	mar life my			State of the second	
Date	0102/11/82				
Signature Battelle AMS QM	Man how	7			
Date	91-8t-h				
Signature verification responsible	appenn Allt				
Date	0102-8/58				
Signature test re- sponsible	-sigtering				
Date	01-452				
Correc- tíve action, if anv	None				
Impact assess- ment	The evaluation of repeatability will be based on few- er compounds. 4-NPE Ad deter- gent 2 other de- tergents are present in the results for evalua- tion.				AND AND A CONTRACT AND A
Cause	Found solubility in literature around 1-3 mg/l. Dissolved 3 mg in one liter. Pre-screening showed that this concentration was non-toxic.				
Deviation	Repeatability for 4-NPE was not completed. The sample was not sent for chemical analyses or Mi- crotox testing.		والمحافظ وال		
Experiment label Test Plan	24 A				
vo No No	-4				
	the second s				-

3----

Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the format:

~		
Signature	W	A A A A A A A A A A A A A A A A A A A
Date	017-00	01-5-05
Signature Battelle	A A A A A A A A A A A A A A A A A A A	TAME
Date	°1.4.3	01-6C.h
Signature verification	and the second s	24820 HO 22330
Date	2-3-32	21-3-382-
Signature test re-	Surger Surger	Colour for
Date	01 3/60	01-3/62
Corrective action, if	None	None
Impact assess- ment	The waste water is non toxic. Therefore dupli- cate measure- ments are consi- dered sufficient	If the waste water is non toxic, a duplicate meas- urement will be sufficient and consistent with the industrial wa- ter test. If toxic, there is no deviation and test will be run in tiplicate per the original test plan.
Cause	One tube was acci- dentally measured twice. When trying to correct the error the test was aborted.	To be consistent with the test on in- dustrial waste water.
Deviation	The test on indus- trial waste water was only per- formed as repli- cate, not triplicate as specified	The test of the municipal waste water will be run in duplicate in case of non toxici- ty.
Experiment tabel Test Plan	X	¥
No.	чл	ω

De sponsible responsible AMS QM											>> //			7 7, 1	~> Y/ /	2-	ち - - - - - - - - - - - - -	G J	292	2)	
De sponsible responsible AMS QM									, , , , , , , , , , , , , , , , , , ,					7, ~ 2,	V/ /	2/	י כ	5	202	2	/ 	******* ******	>	
be sponsible responsible				ی ج	e e e e e e e e e e e e e e e e e e e	یر ر <u>ب</u>		Z					<	2,	' · <	< -	C	S	-					
be sponsible responsible				ری م	e e e e e e e e e e e e e e e e e e e	ر رب 	- 2 - 7 - 7	ķ	و به میلو مور اف															
Sportsible				<u>ري</u>	.	\$				>		2		22		2								
be						47) inine	5	?;;	èr.							***							~~~~	
- Dec														 , 1	152		ļ	1 27, 	Ŋ	Ŋ	•			
be																	2	/	`	S/Ł	2			
	noted in	the report,	that re-	suits for	Test D	have	been cal-	culated	using one	bacteria	batch	which did	not meet	the ISO	reference	standard	onteria	and the	impact on	the results	will be	noted.		
When the bac-	teria patch	does not pass	the criteria for	all three refer-	ence stan-	dards, it will	cause slightly	higher standard	deviations on	the calculated	results and	slightly higher	relative stan-	dard deviation.					د. م					
It is not possible to	change the activity	of the bacteria. We	have asked Hach	Lange for additional	batches; however,	Hach Lange could	only provide three	and 02099 did not	meet all of the ISO	bacteria quality con-	trol. Since the pur-	pose of Test D is to	evaluate reproduci-	bility with different	bacteria batches it is	important to have at	least three batches	included, and the	three batches	represent real-world	availability from the	vendor; therefore,	we have left batch	02099 in the evalua-
The ISO requests	test of standards	and acceptance of	control for bacteria	batches.	Each delivered	batch shall be	checked with three	reference sub-	stances. That has	been done; how-	ever, batch 02099	did not meet the	criteria of being	within 20-80% in-	Nibition for all three	reterence sub-	stances, but this	batch has been	used in Test D to	evaluate batch to	batch variability			
Ő	Test Plan	section	े. द. र. र. र. ज	pendix 4		Constitu			A 1910										17. sp. 17	4.000				
	Test D, The iSO requests It is not possible	Test D, The ISO requests It is not possible Test Plan test of standards change the activi	Test D, The ISO requests It is not possible Test Plan test of standards change the activit section and acceptance of of the bacteria. W	Test D, The iSO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- control for bacteria have asked Hach	Test D, The iSO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- control for bacteria have asked Hach pendix 4 batches. Lange for additio	Test D, The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. V 9.4.4. Ap- control for bacteria have asked Hact pendix 4 batches. Lange for additio pendix 4 batches.	Test D, The iSO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. V 9.4.4. Ap- control for bacteria have asked Hact pendix 4 batches. Lange for additio Each delivered batch shall be Hach Lange coul	Test D, The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- control for bacteria have asked Hach pendix 4 batches. Lange for additio Each delivered batch shall be batch shall be only provide thre	Test D. The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- control for bacteria have asked Hach pendix 4 batches. Lange for additio Each delivered batch shut heree only provide thre reference sub- and 02099 did m	Test D., The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- control for bacteria have asked Hach pendix 4 batches. Lange for additio Each delivered batch shalf be batch shalf be thecked with three only provide thre reference sub- stances. That has meet all of the IS	Test D, The iSO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bactena. W 9.4.4. Ap- control for bacteria have asked Hach pendix 4 batches. Lange for additio batch shalf be Hach Lange coul batch shalf be hach Lange coul checked with three only provide thre reference sub- stances. That has meet all of the IS been done; how- bacteria quality c	Test D, The iSO requests It is not possible Test Plan test of standards change the activi section and acceptance of have asked Hach 9.4.4. Ap- control for bacteria. W 9.4.4. Ap- batches. Lange for additio pendix 4 batches. Lange for additio Each delivered batch shall be batch shall be hach Lange coul checked with three only provide thre reference sub- stances. That has bacteria quality o ever, batch 02099 did m	Test D, The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of have asked Hach 9.4.4. Ap- pendix 4 batches. Lange for additio batch shalf be Hach Lange coul batch shalf be Hach Lange coul checked with three only provide thre reference sub- stances. That has bacteria quality o ever, batch 02099 did m teet all of the IS been done; how- batch 2099 pose of Test D is	Test D, The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of of the bacteria. W 9.4.4. Ap- pendix 4 batches. Lange for additio batch shalf be Hach Lange coul batch shalf be Hach Lange coul checked with three batch shalf be only provide thre reference sub- stances. That has bacteria quality c ever, batch 02099 did m stances, how- be did not meet the criteria of being evaluate reprod	Test D, The ISO requests It is not possible Test Plan test of standards change the activi section and acceptance of nave asked Hach bendix 4 batches. Lange for additio Each delivered hach have asked Hach bendix 4 batches. Lange for additio Each delivered with three batch shalf be hach lange coul checked with three only provide thre reference sub- stances. That has be and 02099 did m stances. That has bacteria quality o did not meet the criteria of being pose of Test D is within 20-80% in- bility with differel	Test D, The ISO requests It is not possible test of standards section and acceptance of of the bacteria. We section and acceptance of have asked Hach pendix 4 batches. Lange for addition bendix 4 batches. Lange for addition bendix 4 batches. That has been done, however batch shalf be and 02099 did meter all of the IS been done; how- batches and 02099 did meter all of the IS been done; how- batches and 02099 did meter all of the IS been done; how- batch 02099 did meter all of the IS been done; how- batches and 02099 did meter all of the IS been done; how- batch 02099 did meter all of the IS been done; how- batches pose of Test D is within 20-80% in- bility with different ablatches batches batch	Test D, The ISO requests It is not possible Test D, Test Plan test of standards change the activities section and acceptance of have asked Hach pendix 4 batches. Lange for additionation batches, howeve batch shall be the free test of	Test D, The ISO requests It is not possible test of standards section and acceptance of have asked Hach section and acceptance of have asked Hach pendix 4 batches. Aprovide the batch shall be batch batch or batches; howeve batch shall be batch shall be batch ba	Test D, The ISO requests It is not possible test Plan test of standards change the activi section and acceptance of nange the activi section and acceptance of have asked Hact Pendux 4 batch shut to batch shut the batch shut three batch shut three terended with three and 02099 did not meet the provide three terended not point three batch has been done; how- batch shut three batch has been and the batch has batch with the batch has batch and the batch has been and the batch has been and the batch has batch and the batch has batch and the batch has batch and the batch and	Test D., The ISO requests Test Plan test of standards of the bacteria. We section and acceptance of of the bacteria. We section and acceptance of have asked Hacf bactors shall be have asked Hacf bactor shall be have asked hacf bactor shall be have asked hacf bactor shall be have asked hacf the bacteria. We have asked have bactor shall be have bactores, howeve bactor shall be have have the po- checked with three theored with three bactor shall be and 02099 did n stances. That has been done; how- been done; how- been done; how- did not meet the ever, bach 02099 froil. Since the po- did not meet the pose of Test D is post of Test D is post of the to have there baches hitty with differed within 20-80% in- hitty with differed batch has been important to have the bactor and the batch has been included, and the	Test D., The ISO requests Test Plan test of standards fit is not possible section and acceptance of of the bacteria. W section and acceptance of hack back pendix 4 batch shall be bettich shall be checked with three reference sub- stances. That has been done; how- stances. That has been done; how- did not meet the evert, batch back pose of Test D is criteria of being within 20-80% in- holton for all three reference sub- montant to back and the stances, but this batch has been recluate batch to be batch has been recluate batch to batch has been reclerence sub- holton for all three reference sub- holton for all three reference sub- nouded, and th stances, but this batch has been represent real-w	Test Plan Test Plan section and acceptance of 9.4.4. Ap- batches, nourol for bacteria. W of the bacteria. W batch set of standards crange the activi and acceptance of batch set of the bacteria. W batch shall be checked with mree batch shall be checked with mree batch shall be did not meet up ever, batch sub- stances. That has been done; how- stances ub- did not meet up ever, batch aguality did not meet up ever, batch aguality did not meet up ever up of the IS been done; how- bitly with differed within 20-90% in- bitly with differed batch has been important to hav reference sub- bitly with differed batch has been important to hav the batch set of batch real-with batch variability from	Test Di, Test Plan section 3.4.4. Ap- batches pendix 4 batches pendix 4 batches pendix 4 batches pendix 4 batches batc	Test D, Test Plan section section 34.4. Ap- batch standards control for bacteria. W 9.4.4. Ap- batch shall be control for bacteria batch shall be checked with three batch shall be checked with three reference sub- stances. That has been done; how- stances. That has been done; how- ever, batch shall be did not meet the ever, batch aquality ever, batch aquality ever, batch has been done; how- batch aquality did not meet the ever, batch aquality ever bacteria batches hity with differed within 20-90% in- bility with differed montant to have stances, but this hatch tabellity from batch variability from ve have left bat

Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the former.

T~~

v V Nada	STOH ply and
Date Sig	10-6-2010
Signature Battelle AMS QM	mmming
Date	01-6-9
Signature verification responsible	and and
Date	² 3d
Signature test re- sponsible	Column free
Date	0102 . 9/
Corrective ac- tion, if any gated if any other laborato- ry could fulfill the require- ments, but none could be found (expect	for laboratories using the HACH-LANGE LUMIStox). In the test re- port, text will be included that describes the planned reference tests and why they were not per-
Impact assess- ment The results were only intended to be used to give indication of tox- icity level and e.g. as false posi- tive or negative. The results were-	not intended to be used as true values. The value of the tests were from the begin- ning limited.
Cause The tests should be performed ac- cording to ISO 11348-3 and under ISO 17025 accre- ditation and with different equip- ment than tested in	the vertification. The selected la- boratory ALcontrol (using Microtox equipment) was atter test of 3 samples found not to futfil the re- quirements.
Deviation Reference lu- minescent bactería tests were not per- formed	
Experiment label 4 4 4.3	
o o z o z o o c c o c c c c c c c c c c	

Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the format:

,...

٠

o ع	
Signatur ETV	have by a thed
Date	01-9-17
Signature Baitelle	m Marine
Date	5.240
Signature verification	
Date	5 ft 3 35
Signature test re-	Section 200
Date	01- <u>4</u> 22
Corrective ac- tion, if any	One of the lested 3 sam- ples was a blank. The re- sults will be listed with a comment re- lated to the reference la- boratory not tutfilling the ISO 11348-3 requirement and a refer- ence to the associated deviation in the test me- thod.
Impact assess- ment	2 blanks of DHI MilliQ water should be tested as part of test system control. One result will be listed.
Cause	The tests should be performed ac- cording to ISO 11348-3 and under ISO 17025 accre- ditation and with different equip- ment than tested in the verification. The selected la- poratory AL control (using Microtox equipment) was after rest of 3 samples found not to futfit the re- quirements.
UONAN	Reference Iu- minescent bacteria test of blanks was performed on one instead of two samples
Test Plan	ო დ
Š č	か るい
Deviation reports The test plan version approved must be followed. If (or rather when) deviations are needed during testing, the deviations are noted and justified in the format:

٢

lignature TV anada	ANT II'V	Can II a
Date	4 - 6 - C	2 4 6 5 4 6
Signature Battelle AMS QM	Triff	And And
Date	°'. ?	e
Signature verification responsible	And a contraction of the contrac	A A A A A A A A A A A A A A A A A A A
Date	2 2	2. P. S.
Signature test re- sponsible	- 54.4	
Date	01.1/52	5214.10
Correc- tive ac- tion, if	ON NO	Ŝ
Impact assess- ment	Correct method used, therefore no impact	Since one exter- nal expert is re- viewing report requirements in DANETV QA ma- nual are still ful- filled.
Cause	Eurofins had mixed up SDS with LAS. MK8230-LC-MS is for LAS while DS 237 is for anionic surfacts (as SDS)	US EPA and ETV Canada do not want their experts to re- view test report, they find review of verifi- cation report suffi- cient
Deviation	Method for SDS analyses changed from MK8230-LC- MS to DS 237	Review of test re- port will only be performed by ex- ternal expert Kres- ten Ole Kusk
Experiment label Test Plan	Section 4.3. Tabel	Section 2.4
S o S	2	H Part

*~~